
DeinoMPI
Deino Software © 2006

Contents
DeinoMPI.. 1

Deino Software © 2006 .. 1
Contents .. 2
Introduction... 4

New Features .. 4
Installation... 6
User setup.. 6
Tools ... 7
Security ... 7
Files... 7
Compiling Applications.. 8
Running Applications ... 9

DeinoMPIWin.exe .. 9
Mpiexec tab... 9
Credential Store tab... 13
Cluster tab ... 17
Verify Job tab.. 19
Web tab ... 21

Mpiexe.exe.. 22
Usage... 22
Examples... 22
Standard options.. 22
All options... 22

Debugging Applications ... 25
Command line tools .. 25

create_credential_store.exe... 26
manage_credentials.exe .. 26
manage_public_keys.exe .. 27

Support.. 27
Compiler support .. 28

Developer Studio .NET 2003.. 28
Developer Studio 2005 ... 31
Intel C.. 31
Intel Fortran .. 31
Visual Studio 6.0... 32
Cygwin.. 38
MINGW.. 38
Watcom... 39
Tiny C Compiler ... 40
Borland C.. 40
Digital Mars .. 41
Lcc-win32 ... 42
Pelles C ... 42
Salford FTN95 .. 43

Absoft Fortran... 43
Portland Group Fortran Win64 compiler.. 44
Other compilers... 44

Introduction
DeinoMPI is an implementation of the MPI-2 standard for Microsoft Windows originally
derived from the MPICH2 distribution from Argonne National Laboratory.
System requirements:
Windows 2000/XP/Server 2003
.NET Framework 2.0

New Features

• UNICODE support. All the functions that take char* arguments now have a
second version that takes wchar_t*. DeinoMPI is implemented using wide
characters and provides wrapper functions for ASCII char * strings. The name
conversion is taken care of automatically with macros in mpi.h so all the user
program has to do is define UNICODE and compile. These are the dual
implementation functions (The C functions are listed and the C++ equivalents
also have wide character versions):

o MPI_Add_error_string
MPI_Close_port
MPI_Comm_accept
MPI_Comm_connect
MPI_Comm_get_name
MPI_Comm_set_name
MPI_Comm_spawn
MPI_Comm_spawn_multiple
MPI_Error_string
MPI_File_delete
MPI_File_get_view
MPI_File_open
MPI_File_set_view
MPI_Get_processor_name
MPI_Info_delete
MPI_Info_get
MPI_Info_get_nthkey
MPI_Info_get_valuelen
MPI_Info_set
MPI_Init
MPI_Init_thread
MPI_Lookup_name
MPI_Open_port
MPI_Pack_external
MPI_Pack_external_size
MPI_Publish_name
MPI_Register_datarep
MPI_Type_get_name
MPI_Type_set_name

MPI_Unpack_external
MPI_Unpublish_name
MPI_Win_get_name
MPI_Win_set_name

• Collective operations have been optimized for clusters of SMP machines. The
collective operations have been optimized to minimize network traffic when
multiple processes reside on each node. The new functions only affect
MPI_COMM_WORLD but in the future this support will be extended to derived
communicators. For the beta release this functionality has to be turned on by an
environment variable. If you want to try it out add "-env
MPICH_USE_SMP_OPTIMIZATIONS 1" to your mpiexec command line.

• A new startup mechanism and process manager. The DeinoPM (process
manager) uses public and private keys to establish secure connections between
machines in the cluster. All traffic between the process managers is encrypted.
Each user controls their own keys (similar to the way they would for ssh).

• An abort callback function has been added. This allows for a function to be called
asynchronously when a job is about to be aborted. The current implementation
uses this function to write out logging buffers to disk before the process is killed.
The subsequent log files contain more data as a result.

• Romio has been fully integrated into the source tree and obeys all the same coding
practices as the rest of the code base. This means that MPI_File is allocated the
same way MPI_Comm and other MPI objects are allocated. It also means the
error handling and output is consistent across functions that take MPI_File,
MPI_Comm or any other MPI object.

• The process manager can launch processes that have been compiled for either
DeinoMPI or MPICH2 1.0.3. If you have MPICH2 1.0.3 from Argonne installed
you can run these applications using mpiexec and DeinoMPIwin from DeinoMPI
without modification. The process manager knows how to set up the environment
for binaries compiled against MPICH2 1.0.3. This allows you to use one process
manager to start all your DeinoMPI and MPICH2 jobs.

• Singleton init supports MPI-2 spawn functions. DeinoMPI allows single
processes started without the process manager to call the spawn functions just as
if it had been started by mpiexec. In other words, if you start your application like
this, “mpiexec –n 1 myapp.exe”, or like this, “myapp.exe”, both applications can
call MPI_Comm_spawn.

• DeinoMPI has a callback function that can print out the state of the MPI message
queues and the recent MPI function call history of a running job. This can be
useful for developers when a job hangs and they want to see what MPI messages
the processes are waiting on and what MPI function calls they have made.

• DeinoMPI supports directory staging. DeinoMPI can copy a directory and its
sub-directories out to the worker nodes before starting a job. Then after the job is
finished any modified files in the directories can be copied back to the source.
This can be useful to push out executables and data files for a job before it starts.

Installation
Download DeinoMPI.msi and run it on each machine in your cluster. The installation is
identical on all machines and you must be an administrator to install Deino MPI on a
machine. In addition to the software libraries and tools a process manager is installed as
a Windows service. This action requires administrator privileges. Once the package is
installed on the machines all users can use DeinoMPI even if they don’t have
administrator privileges.

Note on Windows Vista:
Currently on a Windows Vista machine the installer cannot start the Deino Process
Manger service because the installer runs commands with limited privileges even when
the user has Administrator privileges. So this means that you have to go to the Services
management console after installing DeinoMPI and start the DeinoMPI Process Manager
service on each node before Deino MPI jobs can be run (or you can reboot the machines
and the service will start automatically). The management console can be started by
right-clicking Computer from the Start menu and selecting “manage”. Navigate to the
DeinoPM service, right-click and select Start.

User setup
After you install the software on all the machines each user will need to create a
Credential store. This store will be used to securely launch jobs. Mpiexec will not run a
job without a Credential Store and the GUI tool will prompt the user to create a store the
first time it is run. Users can use the DeinoMPIwin tool to create a Credential store or
they can use the command line tool, create_credential_store.exe, to create the store.
 By default all users have access to all machines where DeinoMPI is installed and
can launch jobs on any machines where they have user accounts. If you want to restrict
user access to machines you can use the manage_public_keys.exe command line tool.
Have an administrator run the following two commands on each machine that you want
restricted access to:

1) manage_public_keys.exe /auto_keys false
2) manage_public_keys.exe /clear_all

At this point no users will have access to the machines. Then the administrator can add
users one by one using the public key from each user’s Credential store. Have each user
export their public key from their Credential store using the GUI tool or the
manage_public_keys.exe command line tool. The command line would be something
like this:
 manage_public_keys.exe /export mypubkey.txt
Then send this file to or point the administrator to this file. The administrator can add
access to the user using the following command:
 manage_public_keys.exe /import mypubkey.txt
This command is local to a machine and must be executed by a user with administrator
privileges on the machine. Since the command is local it must be executed on each
machine in the cluster that you want the user to have access to. Once the user’s public
key has been imported on one or more machines in the cluster then the user can use
mpiexec or the GUI tool to launch jobs on those machines.

Tools
The following tools are installed:

• Mpiexe.exe – The MPI job launcher
• DeinoMPIwin.exe – The GUI interface which includes mpiexec job launching

functionality and setup and management tools
• DeinoPM.exe – The process manager service
• Command line tools:

o create_credential_store.exe
o manage_credentials.exe
o manage_public_keys.exe

• Jumpshot – A Java tool to view log files created when MPI jobs are profiled

Security
All communication used during process startup and management is encrypted. The
public and private keys in each user’s Credential store are used to establish secure
connections between machines in the cluster. The keys are used to encrypt a session key
which is then used to encrypt and decrypt session data. The private keys currently are
2048 bit and the session encryption uses the Rijndael (AES) algorithm.

Files
The following sub-directories are created in the location you choose to install DeinoMPI:
bin, include, lib, examples and java. The bin directory contains the executable files
mpiexec.exe and DeinoPM.exe and Jumpshot.jar and the command line tools. The
include directory contains the header files required to compile MPI applications. The lib
directory contains the libraries required to link MPI applications. The examples directory
contains pre-compiled example applications and source code for each. Read the
examples.pdf file for a description of all the examples. The java directory contains the
manual for the Jumpshot log viewing application. The dlls used to implement DeinoMPI
are installed in the Windows system directory. Two assemblies used are installed in the
GAC (Global Assembly Cache), DeinoMPI.dll and DeinoLP.dll.

Compiling Applications
Compile your MPI applications using the following information. Set your include path to
include the DeinoMPI\include directory. Set your library path to include the
DeinoMPI\lib directory. Link your C applications with mpi.lib from the lib directory.
Link C++ applications with the cxx.lib and mpi.lib libraries. Link Fortran applications
with fmpich2.lib.

There are several versions of the Fortran link libraries to support common name
mangling and calling conventions used by various Fortran compilers. The following
libraries contain the specified formats:

• fmpich2.lib – MPI_INIT and mpi_init_. All capital external names and all
lower case external names with a trailing underscore. Functions use the C
calling convention. There is a Unicode version of this library also –
fmpich2u.lib. The Intel compiler uses this format as of the 8.x series. The
Portland Group compiler uses the lower case format.

• fmpich2s.lib – MPI_INIT@4. All capital external names. Functions use the
stdcall calling convention. Visual Fortran 6.x uses this format.

• fmpich2g.lib – mpi_init__. All lower case external names with two trailing
underscores. Functions use the C calling convention. g77 uses this format.

For examples using specific compilers see the Compiler support section.

The libraries have the same names as in the MPICH2 distribution so users with existing
scripts can easily port them to DeinoMPI.

Running Applications
You can use the graphical DeinoMPIwin.exe or mpiexec.exe from the command line to
start MPI jobs.

DeinoMPIWin.exe
This multi-purpose tool can be used to start MPI jobs, manage the user’s Credential
Store, search the local network for machines with DeinoMPI installed, verify the mpiexec
inputs to diagnose common job problems, and view the DeinoMPI web page for
information such as help pages on all the MPI functions.

Mpiexec tab
The main page is used to start and interact with MPI jobs.

The mpiexec tab contains the following sections:

• Application button and text box
o Enter the full path to your MPI application here. The path must be valid

on all machines in the job. If you specify a local path like,
C:\temp\myapp.exe, then you must copy myapp.exe to all the nodes in the
job before executing the job. DeinoMPI does not push local files out to
the nodes for you

o If you enter a network path to an executable you need to make sure you
have enough licenses on the server to host the executable. For example if
the application is specified like this, \\myserver\myshare\myapp.exe, then
you need to make sure that the host myserver has enough licenses to serve

myapp.exe to all the nodes in the cluster. Windows XP only allows 10
network connections to a file. If you plan on running jobs this way with
more than 5 processes then you probably need to be running Windows
Server on the myserver machine.

o Click the Application button to browse to the location of your executable.
• Execute button

o Click this button to start the job. The output area will turn green while the
job is running and output will be displayed there. You can also type into
the output area and the characters will be sent to the root process in the job
each time you hit enter.

• Break button
o This button can be used to abort a job and kill all the processes.

• Number of processes spinner
o Use this control to enter how many processes you want to launch.

• Credential Store Account selection box
o Select the user credential to launch the job under. If your Credential store

does not contain any user credentials then you will be prompted to enter a
user account when you click the Execute button.

• More options check box
o This box expands or contracts the extra controls area.

• Hosts edit box
o Enter the hosts here where the job is to be launched. If this is left blank

then the default hosts are used. If it is blank and there are no default hosts
then the local host is used. Hosts are selected from this list in a round
robin fashion from left to right. If you want more than one process to be
deposited on a host before moving on to the next host you can specify this
by adding a colon and a number to the host name. So if your list looked
like this:

� hostA hostB:2 hostC
o Then hosts would be selected like this: hostA hostB hostB hostC hostA

hostB hostB hostC hostA …
• Localroot check box

o Check this box to have the root process in the job (process 0) launched
directly from the current process bypassing the process manager. This
means that the process will run under the same credentials as the current
process which may or may not be the one selected from the Credential
store. It also means that the process will have access to the console so it
can do things like bring up windows and interact with the user.

• Localonly check box
o Check this box to cause all processes to be launched on the local machine.

All host information will be ignored and all the processes will be launched
locally.

• Environment variables edit box
o Enter a list of environment variables and their values here to be set in the

environment of each process in the job before each is launched. The
format is var=val var2=val2 …

o If either the variable name or value has spaces in it then they must be
quoted like this: “my name”=”John Doe”

• Add call history check button
o This helper button adds or removes the environment variable used to

control the MPI call history debugging option. With this environment
variable set all MPI function calls are printed to an internal ring buffer
while the job is running. Then you can click the Show Messages button
and the call history will be printed out for each process. The default is to
save 32 calls per process. If you want to reduce this number you can set
the variable MPICH_CALL_HISTORY_SIZE=num_entries. You can set
this value to a number between 1 and 32.

• Add SMP optimizations check button
o This helper button adds or removes the environment variable used to

control the SMP optimizations for the collective operations. With this
environment variable set the communication patterns for the collective
operations are modified to minimize the network traffic on clusters of
SMP machines. When jobs are run with multiple processes per host node
the collective operations can be broken into two steps, a node phase and a
network phase, thus minimizing the network traffic and speeding up the
operations. As of the 1.0.7 release the optimized functions are
MPI_Bcast, MPI_Barrier, MPI_Allreduce and MPI_Gather and they only
apply to MPI_COMM_WORLD. To turn on all optimizations use the
variable MPICH_USE_SMP_OPTIMIZATIONS=1. To turn on
individual options use MPICH_SMP_BCAST=1,
MPICH_SMP_BARRIER=1, MPICH_SMP_GATHER=1 or
MPICH_SMP_ALLREDUCE=1.

• Working directory edit box and browse button
o Enter the path to the working directory to be set before each process is

launched. Use the browse button to select a directory using a GUI.
• Network mapped drives edit box

o Drive mappings entered here will be mapped before each process is started
and removed after the processes exit. The format is <drive>:<share path>.
For multiple mappings separate them with semi-colons. The following
example shows two mappings: z:\\myserver\myhome;y:\\myserver\mydata

• Channel selection box
o Select the MPICH2 channel to use for inter-process communication. The

default is the sock channel and is valid for all cases.
o Sock – TCP/IP socket channel

� This channel uses TCP/IP sockets to communicate between
processes.

o Shm – shared memory channel
� This channel can only be used on a single machine and only scales

up to about 8 processes
o Sshm – scalable shared memory channel

� This channel can only be used on a single machine
o Mt – mutli-threaded socket channel

� This channel is the same as the sock channel but the thread safe
locks have been turned on so that MPI applications can be multi-
threaded.

• Exitcodes check box
o Select this option to print the exit codes of all the processes when the job

exits.
• Log check box

o Select this option to use the MPE wrappers to create a log file of the MPI
job. When the job completes a clog2 file will be created in the same
location as the MPI application and will have the same name as the
application with .clog2 appended to the end. Then you can use Jumpshot
to view this file. Jumpshot will convert the .clog2 file to a .slog2 file
before viewing.

• Jumpshot button
o If you have Java installed on your machine this button will launch the

Jumpshot viewer and pass it the name of the .clog2 log file created from
the last MPI job.

• Show Messages button
o While a job is running this button is available. When you click it a

message is sent to all the processes in the job and they reply with
information about the state of their internal MPI message queues. This
information is then appended to the output area. You can use this
information to see what processes are waiting for MPI messages and a
small amount of information about each message. The MPI function call
history will also be printed for each process if the environment variable,
MPICH_USE_CALL_HISTORY, is set.

• Load Job button
o You can load job information into the dialog from a file previously saved

using the Save Job button.
• Save Job button

o You can save all the information entered in the dialog to a file.
• Use config file checkbox and input box

o If you select the “Use config file” checkbox you can specify a standard
MPI-2 configuration file to describe the job. When this option is selected
all the other members of the dialog are disabled because all the job
description comes from the specified configuration file. The format of the
file is the same as the command line arguments to mpiexec. When
specifying arguments to mpiexec sections are separated by the colon
character. These sections are placed on independent lines in the
configuration file and colons don’t have special meaning. Blank lines are
ignored and lines starting with the # character are considered comments.
The following is an example of a simple configuration file that starts five
processes:

o #sample job
o –n 1 –host HostA C:\temp\master.exe
o –n 4 C:\temp\worker.exe

• Use Directory staging checkbox and associated input fields.
o If you select the “Use directory staging” check box then you can enter the

information necessary so you can stage a directory on all the nodes in your
job. Enter the source directory where you want files to be copied from.
Select the “Copy sub-directories” check box if you want sub directories
under the source directory to be copied also. Enter the destination
directory where you want the files copied to on all the nodes. If you leave
this field blank then the destination will be the same as the source. You
can limit which files will be copied by entering a wildcard specification.
For example if you enter *.txt then only files that end in .txt will be copied
(the default is all files *.*). The files and directories are copied out to the
nodes before the job starts. After the job ends you can copy any modified
files back to the source directory if you select the “Copy modified files
…” checkbox. When files are copied back to the source they will
overwrite files in the source directory. But if there are files created on the
nodes with the same names they will be renamed when copied back to the
source so they don’t clobber each other.

o For example: If you had a directory on a server with your executable and
data files you could enter the directory in the source edit box like this:
\\myserver\myshare\myjob1. Then you could enter a local location in the
destination directory field like this: c:\temp\job1. Then you could enter
into the application field the name of your job executable relative to the
local directory like this: c:\temp\job1\myapp.exe. When you click execute
to start the job the first thing that happens is the myjob1 directory is
copied to all the nodes. Then the job will run and after the job finishes if
you selected to copy the modified files then any modified or new files in
the c:\temp\job1 directory will be copied back to the source directory,
\\myserver\myshare\myjob1.

o The source doesn’t have to be on a server. You could enter a local
directory to be copied to all the nodes like: c:\data\cfd\parallel\sim123.

• Output area
o The output area displays output from the currently running job. It turns

green while the job is active as a visual queue to indicate that the job is
running. You can type into this area and the input will be forwarded to the
root process in the job each time the enter key is pressed.

Credential Store tab
The Credential Store tab is used to manage the current user’s Credential Store.

If you do not have a Credential Store created then select the “enable create store options”
check box and more options will be available. These options are hidden by the check box
because they are usually only needed once by the current user the first time DeinoMPI is
run.

Creating a credential store
Click the “enable create store options” check box to enable the creation fields
Select your choice from the three sections and then click Create Credential Store
The three sections are

1. Password
a. If you select a password then the Credential store can only be accessed by

entering this password. This is the most secure option but it requires that
you enter this password every time an MPI job is run. The password is not
stored anywhere so you have to enter it for every job.

b. Selecting no password protection makes using MPI easier to use but
slightly more vulnerable. With no password, any program run by the
current user can access the Credential store. This usually isn’t a problem
if you know you are not running any malicious software.

c. Even with no password your Credential store is still not available to other
users if you select encryption.

2. Encryption
a. Select “Windows ProtectData API” to encrypt your Credential store using

the current user’s encryption scheme provided by Windows. This ensures
that your Credential store can only be accessed by you when you are
logged in.

b. If you selected a password for your store then you can select the
symmetric key encryption format. This encryption uses the password to

create a symmetric key to encrypt the Credential store. This encryption is
not user specific so any user who knows the password can access the store.

c. The “no encryption” option is not recommended. This option stores the
data in the store in plain-text that anyone can access. With this option it is
your responsibility to protect the Credential store file.

3. Location
a. Select the Removable media option to save the store on a removable

device like a USB thumb drive. If you select this option then MPI jobs
can only be started by the current user when this drive is inserted in the
machine. This can be a security enhancement since the user controls
window of time when the Credential store is available. If this is combined
with a password and the Windows ProtectData API encryption then the
device is also quite safe in case it is lost or misplaced.

b. You can use the hard drive option to save the store to a specific location
on your machine. The browse button lets you graphically navigate to a
directory. This option also allows you to navigate to any location
including a removable media device.

c. Select the Registry option if you want to save the store in the current
user’s Windows Registry hive.

Recommendations:
 If you want the highest security option it is recommended that you select a
password, the Windows ProtectData API and save the store to a removable USB thumb
drive. Click the green High Security label to automatically select these settings.
 If you want high security and convenience it is recommended that you select no
password, the Windows ProtectData API and save the store to the Windows Registry.
Click the yellow Secure and Convenient label to automatically select these settings.

 Once you have created a Credential store you can use the rest of the fields in the
Credential store tab to manage the store. You can add and remove user names and
passwords from the store using the Add and Remove buttons.
 If your store is password protected then you will need to enter the password into
the password box and click login before you will have access to the store.
 You can change the location of your Credential store using the location section.
This is useful if you have created multiple stores. For example you may want to switch
between a store saved to the Windows Registry and another store saved on a USB thumb
drive.
 The Keys section shows the hash of the public key in your store. You can export
the public key to a file by clicking the export button. This file can then be imported into
the PublicKey store on other machines in your cluster. This is required if you select the
option to deny unknown public keys when connecting to machines in your cluster. The
default behavior is to automatically distribute public keys when connecting to machines
for the first time. If you disable the automatic option then you will need to import the
public key of each user that is allowed to run jobs on a machine. Public keys can be
imported into the local PublicKey store on each machine by an administrator using the
manage_public_keys.exe command line tool.

 You can also change the public and private keys in your store. Since this is an
uncommon option it is protected by two clicks. First select the enable create check box
to enable the button to create new keys. Then click the Create New Keys button and the
keys will be replaced in your store with new ones. This option is provided in case your
keys are compromised for some reason. You may also have security requirements that
require you to change the keys at certain intervals. How you decide to manage your keys
and Credential stores is up to you.

Cluster tab
The cluster tab is used to view the machines on your local network and see what version
of DeinoMPI you have installed.

The cluster tab contains the following items:

• Domain dropdown input box. If your network is part of a domain you can input
the domain name here and then click the get host names button to retrieve the host
names from the domain controller. When you select the drop down arrow the tool
queries the network for available domains and adds them to the list. This
operation can take a while.

• Get host names button. After entering a domain name in the domain box click
this button to query the domain for host names and add them to the host list.

• Scan hosts button. Click this button to query all the hosts in the host list to see if
they have DeinoMPI installed. This operation takes a long time and processing
goes on in a background thread. Hosts where DeinoMPI is installed turn red or
blue. Blue hosts have DeinoMPI installed but it is a different version from the
one installed on the local machine. The version installed must be the same on all

the nodes in order to run jobs so only red machines can participate in jobs. Hosts
where DeinoMPI is not installed turn grey. If you add more hosts to the list and
then click the scan button again, only the hosts that have not been previously
scanned are scanned.

• Reset hosts button. Click this button to reset all the hosts in the list to an un-
scanned state. After clicking the reset button, if you click the scan button all the
hosts will be scanned.

• Host input text box. Use this box to enter host names.
• Add host button. After entering a host name into the host input text box click this

button to add the host name to the list.
• Clear host list button. The clear button removes all hosts from the host list.
• Save list button. Click this button to save all the hosts in the list to a file. Any

scanned information is also stored in the file.
• Load list button. Click this button to load a host list from a file that was

previously created using the save list button. This is useful for large lists of hosts
since the scan operation is quite time consuming and hosts usually don’t change
their configuration often.

• View dropdown selection box. Use this option box to determine how the hosts
are presented in the host list area. The two options are Large icons and Details.
The large icons option shows icons and host names. The details option shows the
hosts in a list with small icons and columns for each piece of host information.
Clicking the column headers will sort the list based on the selected column.

• Hosts list. The host list area shows all the hosts and any scanned information
about the hosts in various views. Red hosts have DeinoMPI installed on them.
Blue hosts have a version of DeinoMPI installed on them that does not match the
version installed on the local host. Grey hosts do not have DeinoMPI installed
and white hosts have not been scanned yet. When you click an individual host it
will be scanned and the resulting information will be presented in the host info
area. While a host is being scanned a question mark appears on the machine icon.
If you select one or more hosts then a context menu becomes available using the
right mouse button. Right click the selected hosts and you can perform any of the
following actions:

o Send the selected host names to the mpiexec tab. This action puts the
selected hosts in the hosts text box of the mpiexec tab. Then when you
launch a job these hosts will be used to host the processes.

o Scan the selected hosts. This option will scan all the selected hosts. If the
hosts have already been scanned they will be reset and scanned again.

o Remove the selected hosts. This option will remove all the selected hosts
from the host list.

o Reset the selected hosts. This option will remove any scanned information
and return the selected hosts to a pre-scan unknown state.

• Host info area. When an individual host is selected the information about that
host is presented in the host info area. If the host has DeinoMPI installed on it
then there will be a list of resources available on the host presented here. If the
version of DeinoMPI installed on the host does not match the version installed
locally the tool will not be able to retrieve any information about the host other

than the DeinoMPI version string. If DeinoMPI is not installed on the host then
only the host name will be displayed and a message indicating that DeinoMPI is
not installed.

Verify Job tab
The Verify Job tab is a diagnostic tool to check to make sure the information provided in
the Mpiexec tab describes a valid job that will run on your cluster. It does not run the job
but it parses all the information, contacts the hosts and verifies that the job will be able to
run. It can find the following problems with a job:

• Missing executables.
• Bad user name or password.
• Missing dynamic link libraries.
• Invalid host names.
• Hosts where DeinoMPI is not installed or the versions don’t match.

When you click the Verify button the information in the Mpiexec tab is parsed as if the
job were to be run and then the hosts are contacted and information is collected. The
results for each process in the job are provided in a list with the last entry used to display
all the information for all processes. The processes are color coded to quickly ascertain
the results. Green processes will run without any problems. Red processes will not run
due to one of the problems mentioned in the above bulleted list. Yellow processes will
probably run but have warnings. For example if a working directory does not exist on a
host a warning will be displayed but the process will still run. If a delay loaded dll
dependency is detected in the executable and that dll is not found on a host then a
warning is displayed because the process may fail at runtime. This is a warning and not
an error because many applications have libraries that load dlls based on the capabilities
of the system they run on and do not fail when a dll is missing.
 There are some problems that can cause a job to fail when run that the Verify Job
tab is not able to check. If the process explicitly loads a dll by name using the
LoadLibrary function call and this dll does not exist this error will not be detected. If the
application tries to open a file that does not exist on a host this error will not be detected.
If there is a fault in the application that causes it to crash or if the architecture doesn’t
match these errors will not be detected. There may be other run-time errors that can
occur that this tool does not detect. It is provided as a tool to diagnose the most common
errors that can be detected without running the job.
 If the “Use directory staging” check box from the Mpiexec tab is selected a
warning is displayed under the Verify button. If directory staging is selected then there
may be files required by the job that will be copied out to the nodes before the job starts.
The verify command does not copy any files so it may display errors even though the job
may run just fine after the directories are copied to the nodes.

Web tab
The last tab is the web tab and it shows the web page for DeinoMPI. You must be
connected to the internet to view this tab.

Mpiexe.exe
This command line tool can be used to start MPI jobs.

Usage
mpiexec -n <maxprocs> [options] executable [args ...]
mpiexec [options] executable [args ...] : [options] exe [args] : ...
mpiexec -configfile <configfile>

Examples
mpiexec -n 4 cpi
mpiexec -n 1 -host foo master : -n 8 worker

Standard options
-n <maxprocs>
-wdir <working directory>
-configfile <filename> -

each line contains a complete set of mpiexec options including the executable and
arguments

-host <hostname>
-path <search path for executable, ; separated>

All options
-n x
-np x

Launch x processes.
-localonly x
-n x -localonly

Launch x processes on the local machine.
-machinefile filename

Use a file to list the names of machines to launch on. Each line in the file should
contain one host name. Lines beginning with # are ignored. If you want multiple
processes to be deposited on a single host you can add a colon and a number to
the host name like this: hostA:4

-host hostname
-hosts n host1 host2 ... hostn
-hosts n host1 m1 host2 m2 ... hostn mn

Launch on the specified hosts.
In the second version the number of processes = m1 + m2 + ... + mn.
Example: mpiexec –hosts 3 hostA hostB 2 hostC myapp.exe
The example would produce 4 processes, 1 on hostA, 2 on hostB and 1 on hostC.

-map drive:\\host\share
Map a drive on all the nodes. This mapping will be removed when the processes
exit. Example: mpiexec –map z:\\myserver\myhome –n 4 z:\myapp.exe

-dir drive:\my\working\directory
-wdir drive:\my\working\directory

Launch processes in the specified directory. –wdir and –dir are synonyms.
Example: mpiexec –dir c:\temp –n 4 myapp.exe

-env var val
Set environment variable before launching the processes.
Example: mpiexec –env VERBOSE 1 –n 4 myapp.exe

-logon
Prompt for user account and password.

-pwdfile filename
Read the account and password from the file specified. Put the account on the
first line and the password on the second.

-user <user name>
Select the username to be used from the Credential store. With this option you
can specify different users for different hosts. This is useful if you have different
user accounts and passwords for different machines. The user name must match
an account saved in the current user’s Credential store. If you have the same user
name on different machines but different passwords you will have to specify the
machine name in the user account name like this: hostA\userA and hostB\userA.
Example: mpiexec –user joe –host Foo –n 2 myapp.exe : -user john –host Bar –n
3 myapp.exe

-exitcodes
Print the process exit codes when each process exits.

-noprompt
Prevent mpiexec from prompting for user credentials.

-priority class[:level]
Set the process startup priority class and optionally level.
class = 0,1,2,3,4 = idle, below, normal, above, high
level = 0,1,2,3,4,5 = idle, lowest, below, normal, above, highest
The default is -priority 2:3.

-localroot
Launch the root process directly from mpiexec if the host is local. (This allows
the root process to create windows and be debugged.)

-path search_path
Search path for executable. Separate paths with the ; character.
Example: mpiexec –path c:\bin;c:\temp –n 4 myapp.exe

-timeout seconds
Specify a timeout for the job in seconds. If the job takes longer than the specified
number of seconds mpiexec will kill the processes.
Example: mpiexec –timeout 180 –n 4 myapp.exe

-set_hosts hostA hostB:N hostC ...
Set the default hosts and optionally the number of processes per host. If you want
to specify the number of processes to be deposited on a host put a colon at the end
of the host name and then put the number, like this: foo.host.com:2. This is useful
for multi-CPU machines where you want processes deposited on hosts one per
CPU.

-set_myhosts hostA hostB:N hostC …

Set the default hosts for the current user only. Use the same format as the –
set_hosts option.

-log
Use the MPE logging library to log the MPI job. A clog2 file is produced after
the job finishes which can be converted and viewed using Jumpshot (requires Java
to be installed on the host).

-validate
Validate that the job can run without actually starting the job. Add this flag along
with all the rest of the mpiexec command line. The hosts are contacted to
determine if the job can run but executables are not started.
Example: mpiexec –validate –n 4 cpi.exe

-stage path
Specify the source directory you want to copy out to all the nodes before the job is
started.
Example: -stage c:\data\myjob or -stage \\myserver\myshare\data

-stage_dest path
Specify the destination directory where you want the staged directory to be copied
to. If this option is not specified then the source directory is used as the
destination.
Example: mpiexec -stage \\myserver\myshare\data -stage_dest c:\temp\data ...

-stage_recursive
Specify this flag to indicate that you want the source directory to be copied and all
of its sub-directories also.

-stage_wildcards pattern
Specify a wild-card pattern to limit which files are copied out to the worker nodes
when staging a directory. Only files that match this pattern will be copied.
Example: mpiexec -stage_wildcards *.txt -stage c:\temp\data …

-stage_nopull
Specify this flag to indicate that you do not want any modified files copied back
to the source directory after the job has finished. The default behavior is for new
or modified files in the staging destination directory to be copied back to the
source directory after the job has completed. This flag overrides that option.

Debugging Applications
Debugging parallel applications is hard but there are a few options provided by
DeinoMPI that can help.

This simplest and sometimes most effective way to debug MPI applications is to add
printf statements to your code. Whenever you add a printf statement, make sure to add a
call to fflush(stdout); after the printf statement or statements. It is important to do so
because the output of applications is buffered by default and must be flushed if you want
to see the output immediately. This is true for stderr also because unlike on UNIX
systems stderr is buffered on Windows machines.

The DeinoMPIwin.exe GUI tool has a Show Messages button that can provide useful
information.

First, the Show Messages button will display the current state of the internal MPI
message queues. This can be useful if your application hangs and you are not sure why.
You can click the Show Messages button and see what messages are in the internal
message queues for each process. Two message types can show up. There can be posted
messages where a process is expecting a message but has not received it yet. And there
can be messages that have been received and buffered but not matched yet. Note: some
messages may not correspond directly to user code MPI calls since the implementation
uses internal messages to implement the collective, file and win MPI functions. But it is
easy to understand these messages because they are marked with type information.

Second, the Show Messages button will display the MPI function call history for each
process if you have specified the MPICH_USE_CALL_HISTORY environment variable.
With this option turned on each MPI function call is logged to an internal ring buffer.
When you click the Show Messages button the last N calls will be printed out for each
process. The default is to save 32 calls per process but this can be reduced using the
environment variable, MPICH_CALL_HISTORY_SIZE. Set this value to a number
between 1 and 32 to limit the depth of MPI calls per process saved.

Jumpshot is a java tool that can be used to profile applications. It is limited in its
debugging ability though because applications must run to completion in order to
generate log files. The primary goal of Jumpshot is to view the runtime patterns of an
MPI application and then analyze these patterns to see if changes can be made to the code
to optimize the application. Jumpshot has very well developed tool options for this kind
of work. See the Jumpshot manual for information.

Command line tools
The following command line tools are provided to support DeinoMPI.
create_credential_store.exe and manage_credentials.exe provide command line options
equivalent to those found in the GUI DeinoMPIwin.exe tool. manage_public_keys.exe is
an administrative tool that provides additional functionality not replicated in the GUI
tool.

create_credential_store.exe
This tool creates a Credential store for the current user. Run it with no parameters and it
will prompt you for the information necessary to create a store.

1. First it displays an introductory message and asks if you want to create a
Credential store. If you specify yes it continues otherwise it exits.

2. Then it prompts for a password to protect the private key in the Credential store.
If you do not enter anything by simply hitting enter it prompts you to confirm that
you do not want the key to be password protected.

3. Then it prompts you for the type of encryption to protect the keys with. If you
select “none” the keys will not be encrypted. If you select “protect” it will use the
Windows API protect data functions to encrypt the keys. This type of encryption
is user specific and can only be decrypted by the current user. Stores protected
this way cannot be used by other users even if they know the password protecting
the store. If you entered a password in step 2 then a third option is available:
symmetric encryption. This option uses the password to create a symmetric key
to encrypt the store. This type of encryption can be decrypted by any user who
knows the password.

4. Then it prompts for the location to save the Credential store. The options are to
save it in the Windows registry for the current user, on a removable device like a
USB drive, or on the hard drive.

5. Then the Credential store is created and afterwards the user is ready to use
manage_credentials.exe to add user credentials to the store and mpiexec to start
MPI jobs.

manage_credentials.exe
This tool manages user credentials stored in the current user’s Credential store. Run it
with no parameters and it will output a usage message briefly explaining the options.

• manage_credentials /add [username] [password]
o Add a credential to the store.
o If you do not enter a username and or password you will be prompted to

enter these parameters. If a credential with the same username already
exists in the store it will be replaced.

• manage_credentials /remove [username]
o Remove the credential from the store.

• manage_credentials /list
o List all the usernames in the store.

• manage_credentials /replace_keys
o Create a new private and public key and re-encrypt all the existing

credentials in the store.
• manage_credentials /set_location [path or "registry"]

o Point the current user to the Credential store specified.
o Provide either the full path to the Credential store file or registry to refer to

the Windows Registry.

manage_public_keys.exe
This tool manages the Credential store public keys for the current user and the current
machine. Some options to this tool require administrator privileges to execute. Run it
with no parameters and it will output a usage message briefly explaining the options.

User level options:

• manage_public_keys /export <filename>
o Export the public key from the current user's Credential Store and save it

to the specified file.
• manage_public_keys /export <filename> <CredentialStore filename>

o Export the public key from the specified Credential Store and save it to the
specified file.

Administrator level options:
• manage_public_keys /import <filename>

o Import the public key from the specified file and save it in the PublicKey
store for the local machine.

• manage_public_keys /list
o List the public keys in the PublicKey store for the local machine.

• manage_public_keys /remove <public key hash>
o Remove the public key in the PublicKey store for the local machine that

corresponds to the specified key hash
• manage_public_keys /clear_all

o Remove all public keys in the PublicKey store for the local machine
• manage_public_keys /auto_keys <true or false>

o Set the policy on the local machine to either accept new public keys from
incoming connections automatically or reject them. If auto_keys is set to
false then all user keys must be individually imported into the PublicKey
store using the /import option.

Support
Send bug reports and other correspondence to support@deino.net

Compiler support
This section describes in detail how to compile MPI applications for DeinoMPI using
various compilers.

Developer Studio .NET 2003
For Developer Studio .NET 2003 or newer you can use the example projects provided in
the examples directory as a guide to creating your own projects.

1. Create a project and add your source files. It is recommended that you select a
command line application but if you choose a GUI application you should make
sure it can run unattended and that only the root process creates windows.

2. Bring up the properties dialog for your project by right clicking the project name
and selecting Properties.

3. Navigate to Configuration Properties::C/C++::General
4. Add C:\Program Files\DeinoMPI\include to the “Additional Include Directories”

box.

5. Navigate to Configuration Properties::Linker::General

6. Add C:\Program Files\DeinoMPI\lib to the “Aditional Library Directories”
box.

7. Navigate to Configuration Properties::Linker::Input
8. Add cxx.lib and mpi.lib and fmpich2.lib to the “Additional Dependencies” box. If

your application is a C application then it only needs mpi.lib. If it is a C++
application then it needs both cxx.lib and mpi.lib. If it is a Fortran application
then it only needs one of the fmpich2[s,g].lib libraries. The fortran library comes
in several flavors namely fmpich2.lib, fmpich2u.lib, fmpich2s.lib and
fmpich2g.lib. Add the library that matches your Fortran compiler.

a. fmpich2.lib contains two sets of symbols. One set is all uppercase
symbols and the other is all lowercase with one trailing underscore. Both
interfaces use the C calling convention. The symbols look like this:
MPI_INIT or mpi_init_. The Intel compiler uses this format as of the 8.x
series. The Portland Group compiler uses the lower case format.

b. fmpich2u.lib is a Unicode version of fmpich2.lib
c. fmpich2s.lib contains all uppercase symbols and uses the stdcall calling

convention like this: MPI_INIT@4. Visual Fortran 6.x uses this format
and so does the Intel compiler when combined with the –cvf flag.

d. fmpich2g.lib contains all lowercase symbols with double underscores and
the C calling convention like this: mpi_init__. g77 uses this

format.

9. Compile your application.

Developer Studio 2005
For creating C/C++ MPI applications using Developer Studio 2005 the instructions are
the same as in the section for Developer Studio .NET 2003. The dialog boxes are
identical for setting the include and library paths. There are a couple things to note if you
choose to create a console application using the default wizard settings. The wizard
creates an application using UNICODE and pre-compiled headers. You will need to add
“include <mpi.h>” to the generated stdafx.h file instead of your source file otherwise you
will get unresolved symbol errors. Also the include of mpi.h must go before stdio.h
because of the known conflict between the MPI standard and the standard include files.

Intel C
The Intel compiler can be integrated into Developer Studio .NET 2003 and it accepts the
same command line arguments as the Microsoft Visual C/C++ compiler. So if you have
the Intel compiler integrated into the developer studio suite then you can follow the
instructions from the Developer Studio section to create DeinoMPI applications.

Intel Fortran
The Intel compiler can be integrated into Developer Studio .NET 2003. So if you have
the Intel compiler integrated into the developer studio suite then you can follow the
instructions from the Developer Studio section to create DeinoMPI applications. Set up
the include and library directories as described in the Developer Studio section. For the

default Intel Fortran settings use fmpich2.lib in the link dialog. If you use the –cvf option
then link with the fmpich2s.lib library. The one difference between the instructions for
Visual Studio C/C++ applications and Intel Fortran applications is the location of the
include directory setting. For Fortran applications it is located under the fortran::general
folder:

Visual Studio 6.0
Visual C++ 6.0 cannot handle multiple functions with the same type signature that only
differ in their return type. So you must define
HAVE_NO_VARIABLE_RETURN_TYPE_SUPPORT in your project.

1. Create a project and add your source
files.

2. Bring up the settings for the project by hitting Alt F7. Select the Preprocessor

Category from the C/C++ tab. Enter
HAVE_NO_VARIABLE_RETURN_TYPE_SUPPORT into the Preprocessor
box. Enter C:\Program Files\DeinoMPI\include into the “Additional include
directories”

box.

3. Select the Input Category from the Link tab. Add cxx.lib and mpi.lib to the

Object/library modules box. Add C:\Program Files\DeinoMPI\lib to the
“Additional library path”
box.

4. Change the settings to use the thread safe
libraries

5. Compile your application.

Cygwin
http://www.cygwin.com. Cygwin users can use gcc and g77 to compile DeinoMPI
applications. Link C applications with mpi.lib and Fortran applications with
fmpich2g.lib. In order to run your application you must have the cygwin dll in the
system path or in the same location as your executable. Otherwise the application will
not load. This is important because the process manager does not use the user path so
even though you can run your application as a single process within the bash shell it will
fail when you try to run it with mpiexec. Either copy cygwin1.dll to the Windows
system32 directory or put it in the same location as your
executable.

The C++ interface to MPI is not available under cygwin because g++ does not create the
same symbols as Visual C++ which was used to create the C++ library cxx.lib.

MINGW
The Minimalist GNU for Windows environment allows you to create applications that do
not depend on any dynamic libraries other than the Windows system libraries. This is an
advantage over the cygwin environment because in order to get your cygwin DeinoMPI
application to run you have to copy the cygwin1.dll to all your nodes. MINGW
applications do not depend on any companion dlls.
 In order to test DeinoMPI under MINGW the project files were downloaded from
SourceForge: http://sourceforge.net/projects/mingw. It is recommended that you
download the latest version but the names of the packages used to test DeinoMPI are
provided here for reference.

1. binutils-2.16.91-20060119-1.tar.gz
2. gcc-core-3.4.2-20040916-1.tar.gz
3. gcc-g77-3.4.2-20040916-1.tar.gz
4. mingw32-make-3.81-1.tar.gz
5. mingw-runtime-3.10.tar.gz
6. mingw-utils-0.3.tar.gz
7. w32api-3.7.tar.gz

8. MSYS-1.0.10.exe
On the test machine all the files were unzipped to C:\bin\mingw. After unzipping the
MINGW files MSYS was installed and pointed to C:\bin\mingw. From within the MSYS
shell the example cpi application was compiled and run using
mpiexec:

Watcom
The C compiler from OpenWatcom was tested. Version 1.5 was downloaded from
http://www.openwatcom.org. The sample cpi program was compiled from the command
line. Bring up a command prompt and set the environment variables defined in
CHANGES.ENV in the root Watcom directory. Change to the DeinoMPI directory and
execute the following command:

wcl386 –bm –l=nt –i=include examples\icpi.c lib\mpi.lib

Then execute the example using
mpiexec.

Tiny C Compiler
This compiler almost worked. Version 0.9.23 was downloaded from
http://fabrice.bellard.free.fr/tcc. tcc doesn’t understand the dll macros so mpi.h had to be
modified to remove those definitions by simply defining them to nothing:

#define MPI_CALL
#define MPI_DLL_SPEC

Then it complained about the extern declarations so these two lines had to be removed:
extern MPI_DLL_SPEC MPI_Fint * MPI_F_STATUS_IGNORE;
extern MPI_DLL_SPEC MPI_Fint * MPI_F_STATUSES_IGNORE;

In order to link with the MPI library an export file had to be created. The file
deino_mpich2mpi.def was created by executing this command:

c:\tcc-0.9.23\tcc\tiny_impdef.exe
c:\windows\system32\deino_mpich2mpi.dll

Then the cpi example was compiled using this command:
c:\tcc-0.9.23\tcc\tcc.exe –o tccpi.exe –DUSE_GCC –Iinclude –
Ic:\tcc-0.9.23\include examples\icpi.c deino_mpich2mpi.def
c:\tcc-0.9.23\lib\msvcrt.def

The code compiled but link failed with an unresolved symbol “_start”.

Borland C
The Borland C/C++ compiler command line tools version 5.5 package was downloaded
from http://www.borland.com/downloads/download_cbuilder.html (If the link has
changed then you can always start at the root website and navigate from there
http://www.borland.com). The compiler was installed in the default location and the

configuration files were created in accordance with the readme.txt file. There was a
mistake in the readme in that the configuration files need to be place in the bin directory
and not the root directory. The Borland compiler doesn’t know how to read the
Microsoft import library format so an import library needed to be created before any
DeinoMPI applications could be compiled. This command created the import library:

c:\Borland\bcc55\bin\implib –a mpi.borland.lib
c:\Windows\system32\deino_mpich2mpi.dll

Then you can compile the example cpi application from a command prompt with this
command:

bcc32 –Iinclude examples\icpi.c mpi.borland.lib

Digital Mars
The Digital Mars C/C++ compiler version 8.48 was downloaded from
http://www.digitalmars.com. The C/C++ compiler (dm848c.zip) and Basic Utilities
(bup.zip) packages were unzipped to C:\bin and a dm subdirectory was created by doing
so. Then the icpi sample application was created from a command prompt. The Digital
Mars C compiler cannot read the mpi.lib import library so a new one was created from
deino_mpich2mpi.dll before the sample application could be compiled. Here is the
command to create an import library called mpi_dm.lib:

c:\bin\dm\bin\implib.exe /s mpi_dm.lib
c:\Windows\system32\deino_mpich2mpi.dll

With the import library created icpi could be compiled with the following command:
c:\bin\dm\bin\cl.exe /Iinclude examples\icpi.c mpi_dm.lib

Lcc-win32
The lcc-win32 compiler package version 4.0 July 30, 2006 was downloaded from
http://www.cs.virginia.edu/~lcc-win32. It was installed in the default location C:\lcc.
The compiler cannot link with the DeinoMPI import library, mpi.lib, so a new one was
created using the tools provided. Creating the import library took two steps:

pedump /EXP lib\mpi.lib > mpi.lcc.exp
buildlib mpi.lcc.exp mpi.lcc.lib

Once the import library was created then the sample application could be compiled:
lc –Iinclude examples\icpi.c mpi.lcc.lib

Pelles C
The Pelles C compiler can be found in various places,
http://www.smorgasbordet.com/pellesc or http://www.christian-heffner.de. If either of
these mirrors is not available just search the web for “Pelles C for Windows”. Version
4.0 was installed to the default location. Compiling is straightforward if the cc compiler

driver is used. Here is the command line used to compile icpi.c from a command prompt
after changing into the C:\Program Files\DeinoMPI directory:

C:\Program Files\PellesC\bin\cc.exe /Ze –Iinclude examples\icpi.c
lib\mpi.lib

The /Ze option tells the compiler to use the Microsoft extensions to C.

Salford FTN95
The single user evaluation package of the Salford Fortran95 compiler version 4.9 was
downloaded from http://www.silverfrost.com. The package was installed to the default
location and then the redistributable dlls were copied to the Windows system32 directory.
This is required because executables generated by FTN95 depend on these dlls and they
must be available to the process manager that starts the MPI job. These dlls were found
in C:\Program Files\Salford Software\FTN95\redist*.dll. They need to be copied to all
the nodes that will participate in the MPI job or they need to be copied to the same
location as the MPI application.
 The example fpi application was compiled from the command line. First an
FTN95 command prompt was brought up from the Start menu link installed with the
package. After changing into the DeinoMPI directory the following two commands were
issued to compile the sample application:

ftn95 /INCLUDE include examples\fpi.f
slink examples\fpi.obj c:\Windows\system32\deino_fmpich2.dll

The slink tool creates an import library directly from the Fortran dll from the
DeinoMPI distribution. We were not able to get the compiler to link with the import
libraries provided with
DeinoMPI.

Absoft Fortran
The Absoft Fortran compiler is compatible with the DeinoMPI libraries. The Absoft
compiler generates all uppercase external symbols using the C calling convention by
default so link with fmpich2.lib.

Portland Group Fortran Win64 compiler
The Portland Group Fortran compiler for Windows was tested on a Windows Server
2003 x64 machine. You can compile and link with fmpich2.lib. To compile the sample
fpi application first a PGI Command Prompt (64) was opened using the start menu
shortcut under the PGI Workstation tools menu. After changing into the DeinoMPI
directory the following command compiled the fpi.f sample application:

pgf95 –Iinclude examples\fpi.f lib\fmpich2.lib
The pgf95 compiler creates a dependency on pg.dll so you have to copy this dll to the
system directory of all the machines or put it in the same location as your MPI
application before you can start a job with mpiexec.

Other compilers
If you are using a compiler that cannot link with the Microsoft format mpi.lib or any of
the other libraries in the package then you will need to read the documentation for your
compiler to find out how to link with existing dlls. You will need to be able to create an
import library for deino_mpich2mpi.dll. Most compilers provide tools to strip the export
table from existing dlls and then create import libraries from this information. If you are
successful in this method please send information on how you did it to
support@deino.net so it can be added to the web site.

