Multiprocesorski sistemi

Paralelni algoritmi na CUDA

Matija Dodovi¢, Marko Misic
135114MUPS, 13E114MUPS
2025/2026.

Paralelni algoritmi
na grafickom procesoru (1)

o Graficki procesor je data-parallel orijentisan
Vise hiljada niti se izvrSava u paraleli
Vise hiljada elemenata se obraduje
Sve podatke obraduje isti program

o SPMD model izvrsavanja

Kontrast u odnosu na task-paralle/ model |
paralelizam na nivou instrukcije (ILP)

o Nacin razmisljanja mora biti drugadiji i

orijentisan ka podacima:

Algoritmi se moraju dizajnirati za paralelizam na nivou podataka

Potrebno je koristiti data-paralle/ primitive
kao gradivne elemente za efikasno programiranje

Potrebno je razumeti slozenost paralelnih algoritama

ETF Beograd::Multiprocesorski sistemi 2/45

Paralelni algoritmi
na grafickom procesoru (2)

o Kljucni koraci u paralelnom programiranju:
Pronaci konkurentnost u problemu

Strukturirati algoritam
tako da se konkurentnost prevede u performanse

Implementirati algoritam u pogodonom programskom okruzenju
Izvrsiti program i podesiti performanse koda
na stvarnom paralelnom sistemu
o Na zalost, ovi koraci nisu podeljeni u nivoe apstrakcije
kojima bi mogli da se bavimo nezavisno jednim od drugih

ETF Beograd::Multiprocesorski sistemi 3/45

Problemi paralelnih algoritama

o Performanse mogu biti drasticho umanjeno
zbog velikog broja faktora:

Rezijskog vremena potrebnog za sprovodenije
paralelnog procesiranja

Disbalansa u opterecenju medu procesnim elementima
Neefikasnim obrascima deljenja podataka
Zasicenja kriticnih resursa
o Kao sto je memorijski propusni opseg
o Pronalazenje i iskoriscavanje paralelizma

Cesto zahteva razmatranje problema iz ugla

koji nije ocigledan na prvi pogled
Computational thinking

ETF Beograd::Multiprocesorski sistemi 4/45

Blurovanije slike

ETF Beograd::Multiprocesorski sistemi 5/45

Blurovanje slike

Box:
pikseli
koje
obraduje
jedan blok
niti

ETF Beograd::Multiprocesorski sistemi 6/45

Blurovanje slike

o 2D kernel

__global __ void blurKernel(unsigned char * in, unsigned char * out, int w, int h)

{

int Col = blockldx.x * blockDim.x + threadldx.x;
int Row = blockldx.y * blockDim.y + threadldx.y;

if (Col <w && Row < h) {
... // obrata jednog box-a

}
}

ETF Beograd::Multiprocesorski sistemi 7/45

Blurovanje slike

o Kod za jedan box (BLUR_SIZE — konstanta)

int pixVal = 0;
int pixels = 0;

// AVG susednih 2xBLUR_SIZE x 2xBLUR_SIZE piksela
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;

if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
pixVal += in[curRow * w + curCol];
pixels++; // Akumulacija

}
}

// out je usrednjeni piskel
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

ETF Beograd::Multiprocesorski sistemi

8/45

RGB u Grayscale konverzija

ETF Beograd::Multiprocesorski sistemi 9/45

RGB u Grayscale konverzija

o grayPixel[I,]J] = 0.21*r + 0.71*g + 0.07*b

ETF Beograd::Multiprocesorski sistemi 10/45

RGB u Grayscale konverzija

#define CHANNELS 3 //imamo 3 kanala - po jedan za svaku boju
// Slika je kodovana tako da je svaki piksel u 3 boje intenziteta [0, 255]

__global__ void colorConvert(unsigned char * graylmage, unsigned char * rgblmage, int width, int height) {
int x = threadldx.x + blockldx.x * blockDim.x;

int y = threadldx.y + blockldx.y * blockDim.y;

if (x < width && y < height) {
int grayOffset = y*width + x; // 1D koordinata za grayscale sliku

// uzeti da RGB slika ima CHANNEL puta kolona nego grayscale slika
int rgbOffset = grayOffset*CHANNELS;

unsigned char r = rgblmage[rgbOffset]; // red vrednost piksela
unsigned char g = rgblmage[rgbOffset + 1]; // green vrednost piksela
unsigned char b = rgblmage[rgbOffset + 2]; // blue vrednost piksela

graylmage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

ETF Beograd::Multiprocesorski sistemi 11/45

Studija sluCaja — mnozenje matrica (1)

o Potrebno je
pomnoziti dve matrice

/bog jednostavnosti
pretpostavimo kvadratne
o Jedna nit Ce biti zaduzena za
racunanje jednog
elementa

Svaka nit ce
pristupati WIDTH
puta elementima
matrica M i N

ETF Beograd::Multiprocesorski sistemi

v
12/138

Studija sluCaja — mnozenje matrica (2)

o Tradicionalni sekvencijalni kod:

void MatrixMulOnHost
(float* M, float* N, float* P, int Width) {

for (int i = 0; i < Width; ++1i)
for (int j = 0; j < Width; ++j) {
float sum = 0;
for (int k = 0; k < Width; ++k) {
float a = M[i * width + k];
float b = N[k * width + j];
sum += a * b;
}
P[i * Width + j] = sum;
}
}

ETF Beograd::Multiprocesorski sistemi 13/138

Smestanje matrica u C-u

o Matrice se u C-u smestaju po vrstama
Matrica Ce uredaju biti preneta linearizovana

Svaka nit ¢e proracunati adresu elementa
kome treba da pristupi

MO,O MO,l MO,Z

ETF Beograd::Multiprocesorski sistemi 14/138

Studija sluCaja — mnozenje matrica (3)

o CUDA program na strani domacina:

void MatrixMulOnDevice (float* M, float* N, float* P, int Width) {
int size = Width * Width * sizeof (float);
float *Md, *Nd, *Pd;
1. // Allocate and Load M, N to device memory
cudaMalloc (&Md, size) ;
cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice) ;
cudaMalloc (&Nd, size) ;
cudaMemcpy (Nd, N, size, cudaMemcpyHostToDevice) ;
// Allocate P on the device
cudaMalloc (&Pd, size) ;
//Kernel invocation code — to be shown later
3. // Read P from the device
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost) ;
// Free device matrices
cudaFree (Md) ; cudaFree (Nd); cudaFree (Pd);

N

ETF Beograd::Multiprocesorski sistemi 15/138

Studija slucaja — mnozenje matrica (4)

o Jezgro:

__global void MatrixMulKernel
(float* Md, float* Nd, float* Pd, int Width) {

// Pvalue is used to store the element of the matrix
// that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadIdx.y * Width + k],
float Nelement = Nd[k * Width + threadIdx.x];
Pvalue += Melement * Nelement;

}
Pd[threadIdx.y * Width + threadIdx.x] = Pvalue;

ETF Beograd::Multiprocesorski sistemi 16/138

Studija sluCaja — mnozenje matrica (5)

o Jezgro pokrece sledeci kod:

// Setup the execution configuration
dim3 dimGrid(1l, 1); k
dim3 dimBlock (Width, Width) ;

tx
// Launch the device computation »
threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>
(Md, Nd, Pd, Width); v
ty ty

v

A
\ 4
A

A

v
ETF Beograd::Multiprocesorski sistemi 17/138

Nedostaci predlozenog resenja (1)

o Koristi se samo jedan blok niti
Matrice mogu biti samo ogranicene veliCine

Nd

Md Pd

ETF Beograd::Multiprocesorski sistemi 18/138

Nedostaci predlozenog resenja (2)

o Jedan blok niti raCuna matricu Pd

o Svaka nit racuna jedan element Pd i pritom:
Ucitava vrstu matrice Md
Ucitava kolonu matrice Nd

IzvrSava jedno mnozenje i sabiranje
za svaki par elementa iz matrica Md i Nd

Odnos izmedu raCunanja i
pristupa (sporoj) globalnoj memoriji je mali (oko 1:1)

o 2 operacije
o 2 pristupa globalnoj memoriji
o VeliCina matrice ogranicena brojem niti
dozvoljenom unutar jednog bloka niti
Ogranicno arhitekturom (512/1024 niti)

ETF Beograd::Multiprocesorski sistemi 19/138

Studija slucaja —
mnozenje matrica (6)

o ReSenje — podeliti matricu
na podmatrice (tiles)
koje Ce obraditi zasebni blokovi
Svaka nit racuna jedan element

VeliCina bloka niti Ce biti
jednaka veliCini podmatrice

niti

A

ETF Beograd::Multiprocesorski sistemi

\4
A

v
20/138

Studija sluCaja — mnozenje matrica (7)

o Primer mnozenja matrice 4x4,
koriscenjem blokova niti dlmenzua 2X2 niti

Block(0,0) Block(1,0)

\,

Poo | Pro| P20 [Pao | TILE. WIDTH =2

sz/o Pd3,0

Vd M, M Md, [TP

, szrl Pd3,1

I dO,lMdl,]MdZ,]Md3,

Poy | P1a| P22 | Pap Pd,|Pd, 5|Pd,,Pd;
Pos | Pis | Pos | Pss Pd5|Pd; 5(Pd, 5/ Pd; 5
Block(0,1) Block(1,1)

ETF Beograd::Multiprocesorski sistemi 21/138

Studija sluCaja — mnozenje matrica (8)

o Jezgro:

__global void MatrixMulKernel
(float* Md, float* Nd, float* Pd, int Width) {

// Calculate the row index of the Pd element and M
int Row = blockIdx.y * TILE WIDTH + threadIdx.y;
// Calculate the column index of Pd and N

int Col = blockIdx.x * TILE WIDTH + threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;

// Each thread computes one element of the block
submatrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];
Pd[Row * Width + Col] = Pvalue;

}

ETF Beograd::Multiprocesorski sistemi 22/138

Podeli i sumiraj

o Partition and Summarize

Cesta algoritamska strategija
za procesiranje velikih skupova podataka na GPU

Nalikuje MapReduce radnom okviru za distribuiranu obradu

o Tehnika podrazumeva da:

Ne postoji neki zahtevani poredak obrade elemenata u skupu
o Operacije koje se sprovode su asocijativhe i komutativne

Skup podataka se deli na manje celine (chunks)
Jedna nit obraduje jednu celinu
Redukciono stablo se koristi
da se rezultati kombinuju u krajnji rezultat
o Poslednji korak je tipicno najvazniji
u efikasnoj implementaciji na GPU

ETF Beograd::Multiprocesorski sistemi 23/45

Operacija redukcije (1)

o Tipicna operacija koja se javlja u paralelnim algoritmima
je operacija redukcije
Kao Sto su algoritmi sa logikom Partition and Summarize
o Redukcija prodrazumeva svodenje niza vrednosti
na jednu skalarnu vrednost

Racunanje zbira, proizvoda, makismuma, minimuma,
logicko I/ILI nad svim elementima strukture i sl.

Upotreba dobro definisane jedinicne vrednosti

o Podrazumeva se da je operator
koji se upotrebljava u redukciji asocijativan

Tehnicki, to ne mora biti tacno za aritmetiku u pokretnom zarezu
o U ovom slucaju treba biti paZljiv

ETF Beograd::Multiprocesorski sistemi 24/45

Operacija redukcije (2)

o Radukcije se koriste u velikom broju primena,
mada ne obavezno u paralelnoj formi

Kod mnozenja matrice, pojedinacna nit je vrsila redukciju
prilikom racunanja skalarnog proizvoda vrste i kolone matrice
o Redukcija je potrebna zbog odredenih transformacija
koje se obavljaju prilikom paralelizacije koda
TipiCan primer je privatizacija izlazne lokacije,
kako bi se smanjila potreba za sinhronizacijom

Umesto da vise niti dodaje svoj rezultat u istu lokaciju,
svaka nit dobija svoju privatnu lokaciju

Konacan rezultat se dobija kombinovanjem vrednosti
privatnih lokacija putem redukcije

ETF Beograd::Multiprocesorski sistemi 25/45

Sekvencijalna redukcija

o Inicijalizuje se rezultat jedinicnom vrednoscu
redukcione operacije
0 za zbir
1 za proizvod
Najmanija ili najveca vrednost za max i min

o Iterira se kroz ulazni niz i sprovodi se
redukciona operacija nad rezultatom i
trenutnom vrednoscu elementa na ulazu
Sprovodi se N redukcionih operacija za N ulaznih vrednosti
Slozenost O(n)
Racunski efikasan algoritam

ETF Beograd::Multiprocesorski sistemi 26/45

Paralelna redukcija (1)

o Neefikasan nacin da se ovo obavi na GPU
predstavlja sledeci kod:
Nit O iz bloka sabira elemente sekvencijalno
Ostale niti ne rade nista

if (threadID == 0) {
float sum = 0;
for (int t = 0; t < n; ++t)
sum += array|[t];

ETF Beograd::Multiprocesorski sistemi 27/45

Paralelna redukcija (2)

o Da bismo izvrsili redukciju N elemenata u paraleli,
mozemo koristiti princip stabla
Redukcija se vrSi kroz N-1 operaciju u log(N) koraka

3 1
N V<

1

7 (0] 4 6 3
74 4 6

3

T_7
Q/

13

ETF Beograd::Multiprocesorski sistemi 28/45

Slozenost paralelne redukcije

o Redukcija se obavlja u /og(/N) paralelnih koraka

U svakom koraku 5,
izvrSava se N/2S paralelnih operacija

o Za N=25, izvrsava se X sy p22° = N1 operacija

Algoritam je racunski efikasan, jer ne izvrsava
viSe operacija nego sekvencijalna redukcija

o Sa Pniti fizicki u paraleli,
vremenska slozenost je O(N/P + log N)
U poredenju sa O(N) za sekvencijalnu redukciju

ETF Beograd::Multiprocesorski sistemi 29/45

Paralelna redukcija na GPU (1)

o Primer sumiranja elemenata vektora
Vektor se nalazi u globalnoj memoriji uredaja
Duzina je deljiva veliCinom bloka niti

o Prikazujemo redukciju na nivou bloka niti

Rekurzivno se deli broj niti
na pola u svakom koraku

Sumiraju se dve vrednosti na nivou niti
u svakom koraku
o Finalna redukcija se moze uraditi ponovnim
pozivanjem jezgra ili na domacinu

ETF Beograd::Multiprocesorski sistemi 30/45

Paralelna redukcija na GPU (2)

o Redukcija se obavlja /n-place
korisScenjem deljene memorije
Pretpostavimo da se vektor nalazi
u globalnoj memoriji uredaja

Koristi se deljena memorija
za smestanje medurezultata (vektora parcijalnih suma)

U svakoj iteraciji dobija se vektor parcijalnih suma
o U svakom koraku smo blizi konachom rezultatu

Finalni rezultat se smesta u element 0
u deljenoj memoriji

ETF Beograd::Multiprocesorski sistemi 31/45

Paralelna redukcija na GPU (3)

THREAD O THREAD 1 THREAD 2 THREAD 3

ETF Beograd::Multiprocesorski sistemi 32/45

Paralelna redukcija na GPU (4)

o U primeru sa slike:
Svaka nit je odgovorna za jednu (izlaznu) lokaciju

Sa
Na
PO

parnim indeksom u vektoru parcijalnih suma
Kon svakog koraka redukcije,

ovina niti vise nije potrebna

Jedna od ulaznih lokacija za svaku aktivnu nit je
uvek jedna od izlaznih lokacija iz prethodnog koraka

U svakom koraku se distanca
izmedu ulaznih elementa svake aktivne niti povecava

o Naivna implementacija redukcije

ETF Beograd::Multiprocesorski sistemi

33/45

Naivna paralelna redukcija (1)

__global void reduce(int *g_idata, int *g_odata) {
extern _ shared int sdatal];

// Load shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];

// Do reduction in shared memory
for (unsigned int stride = 1; s < blockDim.x; s *= 2) {
__syncthreads() ;
int index = 2 * stride * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + stride];

}

Memorijski

konflikt

}

// Thread 0 writes result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

ETF Beograd::Multiprocesorski sistemi 34/45

Naivna paralelna redukcija (2)

o DesSavaju se konflikti u deljenoj memoriji
DeSava se simultani pristup kod indeksiranja niza i to dva puta

Prvi pristup (sdata[inde

Niti 2 i 18 pristupajuistojmema KQj banki, itd.
i Y SN
Banka

Korak 1

Vrednosti 10\1 gl-1l0l-2(3(5(-2]-3|... 7|0 l11lo| 2 -1 4 [11]-5] 0 |12...
Twead & % B B % L B B B H B

P i1

meElt s T OV T Y VT VYTV

ETF Beograd::Multiprocesorski sistemi 35/45

Naivna paralelna redukcija (3)

o Drugi simultani pristup (sdata[index + stride])

Niti 0 i 8 pristupaju istoj memorijskoj banki

9 pristupaju istoj memory

Korak 1
10 pristupaju istoj memor
Banka
Vrednosti [10{1|8|-1{0|-2[3|5|-2[-3|...| 7|0 [t1] 0| 2]-1]4[11]-5| 0 [12]...
v/ v v] v 3] +]]+ ¥] <
romerai 1wt @ @ @ @ @/ &/ @l 6/ iv! @/ i/
v + <+ 3+ I I ¢ $ $ I I

ETF Beograd::Multiprocesorski sistemi 36/45

Naivna paralelna redukcija (4)

o Prvi simultani pristup (sdata[index])
4-ostruki konflikt

Parne niti pristupaju bankama 0 j
Neparne niti pristupaju bankama 8 i 24

Korak 3

Banka

Vrednosti 10\1 gl-110/-2[3|5]-2]-3..|7lol11lo]2 -1 4 |11]-5|0 [12]...

+) +
Pomeraj 8 Nit ID 0 1 4
4 + v

ETF Beograd::Multiprocesorski sistemi 37/45

Redukcija bez konflikta (1)

o Korektna implementacija bez memorijskih konflikta:
for (int s = 1; s < blockDim.x; s *= 2) {
__syncthreads() ;
if (threadlIdx.x % (2 * s) == 0)
sdata[threadID] += sdata[threadlIdx.x + s];

}

o Problem je veliki broj divergentnih warp-ova
prilikom izvrSavanja ovakvog koda
Polovina niti (parne niti) ce biti aktivna,
a polovina ne (neparne niti)

Ukoliko postoje grananja unutar warp-a,
sve niti Ce izvrsiti sve putanje, sto dovodi do usporenja

ETF Beograd::Multiprocesorski sistemi 38/45

Redukcija bez konflikta (2)

Vrednosti | 10 11
Korak 1 J J / / / / / /
Pomeraj1 ~ Nit'D @ % # $ $ ib ih ib

Vrednost| -1 5 5 -3 7 11 11 2
Korak 2 / / v v /
Pomeraj 2 Nit ID * * ? if

Vrednosti 2|1 8| 5| 4 11 2| 2

309713
Korak 3 4_/ ¢4_/
: NitID & 8
v
17

Pomeraj 4
Vrednostil_zt 1|17 |-1(6]|-2|8]|5

¢ /
Korak 4 NitID @«

Pomeraj 8
Vrednostil_il 1|17|-1|6|-2(8]|5]17]|-3

ETF Beograd::Multiprocesorski sistemi 39/45

3197|1311 2| 2

O
N
—
w

11| 2 | 2

Bolje resenje redukcije (1)

o Prethodna resenja iskazuju sledece probleme:
Memorijske konflikte (prvo resenje)
Divergenciju u kontroli toka

Slabo iskoriScenje resursa

o Vecina niti u warp-u prestaje da bude aktivna
posle nekoliko koraka

Polovina niti uCestvuje samo u ucitavanju podataka
o Blok podataka redukuje efektivho N/2 niti

ETF Beograd::Multiprocesorski sistemi 40/45

Bolje resenje redukcije (2)

o Bolje resenje redukcije se dobija
primenom sledecih saveta:

Parcijalne sume treba odrzavati
u pocetnim lokacijama niza

Aktivne niti treba da budu konsekutivne u bloku
o Ideja je da niti pristupaju
nesusednim elementima u bloku koji redukuju

Moguce s obzirom da su redukcioni operatori
komutativni i asocijativni

ETF Beograd::Multiprocesorski sistemi 41/45

Bolje reSenje redukcije (3)

Indeksi

Vrednosti | 10

Korak 1 l} W
Pomeraj 1 fa

NitD © T 2 G S 6 T
|_+ Yy ¥ Y v v v ¥
Korak 2 Vrednosti | 8 | 2106 | 0|9 |37 11 2
Pomersj 2 |
NitD & & @ @
Yy v Vv
Korak 3 vrednosti | 8 | 7 [13[13| 0|9 |3 |7 11 2
Pomeraj 4 ¢‘/#4//
NitiD & ?
Korak 4 Vrednosti |_2+1 20113113101 9| 3| 7 11 2
Pomeraj 8 3
Nit ID {B/
_ = 2
Vrednosti [41 |20|13|13| 0| 9| 3| 7 11

2]
/45

ETF Beograd::Multiprocesorski sisterfr

Bolje resenje redukcije (4)

__global void reduce(int *g idata, int *g_odata) {
extern _ shared int sdatal];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
sdata[tid] = g_idatal[i];
__syncthreads() ;
// do reduction in shared mem
for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {
if (tid < s) {
sdata[tid] = sdata[tid] + sdata[tid + s];
}
__syncthreads() ;
}
// write result for this block to global mem
if (tid == 0) g odata[blockIdx.x] = sdata[O0];

ETF Beograd::Multiprocesorski sistemi 43/45

Bolje resenje redukcije (5)

o Treba primetiti da nakon ucitavanja elementa
u deljenu memoriju samo polovina niti radi redukciju:
for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {
if (tid < s)
sdata[tid] = sdata[tid] + sdata[tid + s];
__syncthreads() ;

}

o To se moze promeniti tako Sto ¢e svaka nit raditi dva
Citanja i prvo sumiranje u redukciji:

Broj blokova se tako smanjuje za pola
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x* (blockDim.x*2) + threadIdx.x;
sdata[tid] = g _idata[i] + g idata[i+blockDim.x];
__syncthreads() ;

ETF Beograd::Multiprocesorski sistemi 44/45

Bolje reSenje redukcije (6)

I
__global void reduce(int *g idata, int *g_odata) {
extern _ shared int sdatal];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x* (blockDim.x*2) + threadIdx.x;
sdata[tid] = g _idata[i] + g _idata[i+blockDim.x];
__syncthreads() ;
// do reduction in shared mem
for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {
if (tid < s) {
sdata[tid] = sdata[tid] + sdata[tid + s];
}
__syncthreads() ;
}
// write result for this block to global mem
if (tid == 0) g odata[blockIdx.x] = sdata[O0];

ETF Beograd::Multiprocesorski sistemi 45/45

Uklanjanje petlji (1)

o Samo jedan warp unutar bloka je aktivan
u poslednjih nekoliko koraka redukcije

Broj iteracija petlje se moze smaniiti |
time ukloniti suvisni pozivi __syncthreads ()

o Moze da se uradi razmotavanje petlje

Poznata /oop unrolling tehnika koju sprovode
prevodioci ili programer
Eliminisu se skokovi u petlji
ponavljanjem naredbi iz tela petlje
o Optimizacija vreme/prostor
o Povecava duzinu binarnog koda

ETF Beograd::Multiprocesorski sistemi 46/45

Uklanjanje petlji (2)

o Razmotavaju se sve iteracije petlje u kojima ucestvuje

samo jedan warp od 32 niti
for (unsigned int s = blockDim.x/2; s > 32; s >>= 1) {
if (tid < s) {

}

sdata[tid]

__syncthreads() ;

}

if
if
if
if
if
if

(tid
(tid
(tid
(tid
(tid
(tid

< 32)
< 16)

<

<
<
<

8)
4)
2)
1)

ETF Beograd::Multiprocesorski sistemi

sdata[tid]
sdata[tid]
sdata[tid]
sdata[tid]
sdata[tid]
sdata[tid]

+= sdata[tid + s];

sdata[tid
sdata[tid
sdata[tid
sdata[tid
sdata[tid
sdata[tid

+ + + + + +

32];
16];
8]
4];
2];
1];

47/45

Redukcija nad velikim nizovima (1)

o Do sada je razmatrana redukcija na nivou bloka podataka

Nezavisni blokovi niti redukuju jedan blok podataka
iz globalne memorije
CUDA ne dozvoljava globalnu sinhronizaciju medu blokovima

o Potreban nacin da niti iz razliCitih blokova
medusobno saraduju
Resenje je iskoristiti viSestruke pozive istog jezgra

Poziv jezgru se moze posmatrati
kao globalna sinhorizaciona tacka

o Poziv jezgru trosSi zanemarljivo rezijsko vreme

Nakon zavrSetka redukcije na nivou pojedinacnih blokova,
treba pozvati jezgro ponovo, sada samo sa jednim blokom

Alternativno, poslednji korak se moze izvrsiti na CPU

ETF Beograd::Multiprocesorski sistemi 48/45

Redukcija nad velikim nizovima (2)

o Primer redukcije u vise nivoa
Tiled algoritam

Svaki blok niti redukuje jedan podblok podataka iz ulaznog niza

Medurezultati se smestaju u globalnu memoriju i
koriste kao ulazni podaci za sledeci poziv jezgru

Postupak se ponavlja onoliko puta koliko je potrebno

3 Level 1:
- 1 block

ETF Beograd::Multiprocesorski sistemi 49/45

Odredivanje histograma (1)

o Veoma Cesto je potrebno odrediti statistiku pojavljivanja
elemenata na skupu elemenata
Statistiku pojavljivanja pojedinacnih elemenata
Statistiku pojavljivanja elemenata klasifikovanih
u odredene podskupove ili opsege (bins)
o Bazi¢no resenje:
Koristiti niz brojaca inicijalizovanih na 0
Za svaki element u skupu, iskoristiti vrednost da se identifikuje
odgovarajuci brojac koji treba inkrementirati
o Efikasno resenje na grafickom procesoru zahteva
dosta drugaciji pristup od dosadasnijih
Zbog postojanja interferencije niti na izlazu

ETF Beograd::Multiprocesorski sistemi 50/45

Odredivanje histograma (2)

o Primer odredivanja histograma stringa
Programming Massively Parallel Processors

Pretpostaviti da svaki brojac predstavlja
Cetiri uzastopna slova engleskog alfabeta

o a-a, e-h, I, m-p, g-t, u-x, y-z
Za svaki karakter ulaznog stringa treba inkrementirati
odgovarajuci brojac

12
a-d e-h i-l m-p g-t u-x y-z

ETF Beograd::Multiprocesorski sistemi 51/45

10

(] N i ()] oe]

Odredivanje histograma (3)

o Bazi¢no resenje na grafickom procesoru
Podeliti ulazni niz na blokove (4ile)
Jedna nit Ce biti zaduzena za jedan element bloka
Nit ¢e inkrementirati odgovarajuci brojac

Uzastopne niti pristupaju uzastopnim elementima
kako bi se obezbedio sjedinjeni pristup

Po potrebi, niti ponavljaju postupak

Interleaved partitioning

ETF Beograd::Multiprocesorski sistemi 52/45

Odredivanje histograma (4)

o Prvi blok niti

Thread 0

Thread 1

Thread 2

Thread 3

ETF Beograd::Multiprocesorski sistemi 53/45

Odredivanije histograma (5)

o Drugi blok niti
Primecuje se race condition problem kod pristupa brojacima!

ETF Beograd::Multiprocesorski sistemi 54/45

Odredivanije histograma (6)

o Nacin podele podataka po nitima je dobar
Dobro se koristi propusni opseg
o Medutim, postoji utrkivanje (hazard)
prilikom pristupa brojacima
DeSava se Read-Modlfy-Write sekvenca operacija
Mora se sprovesti atomicno
o Resenje je u koriscenju atomicnih operacija
dostupnih u okviru CUDA jezgra
Na hardveru koji ih podrzava

ETF Beograd::Multiprocesorski sistemi

55/45

Bazicno histogram jezgro (1)

__global void histo_kernel (unsigned char *buffer,
long size, unsigned int *histo)

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {
int alphabet position = buffer[i] - “a”;
if (alphabet position >= 0 && alpha position < 26)

atomicAdd (& (histo[alphabet position/4]), 1);

i += stride;

ETF Beograd::Multiprocesorski sistemi

56/45

Bazicno histogram jezgro (2)

o Predstavljeno resenje je korektno
Medutim, postoji nekoliko vaznih nedostataka

o Atomicne operacije konzumiraju znacajan propusni opseg
Atomicna operacija nad DRAM lokaciom pocenje sa Citanjem
koje ima kasnjenju od nekoliko stotina ciklusa

Atomicna operacija nad DRAM lokaciom zavrSava se pisanjem
koje ima kasnjenju od nekoliko stotina ciklusa

U meduvremenu, nijedna nit ne moze da pristupi lokaciji
o Svaka Read-Modify-Write sekvenca operacija prouzrokuje
dvostruko kasnjenje u pristupu memoriji
Vise pristupa istoj lokaciji prouzrokuje serijalizaciju
fime

>
DRAM read latency DRAM write latency DRAM read latency DRAM write latency

ETF Beograd::Multiprocesorski sistemi 57/45

Propusni opseg atomicnih operacija

o Propusni opseg atomicnih operacija je limitiran
Zavisi od brzine kojom atomicna operacija moze da se sprovede
o Brzina sprovodenja atomicne operacije je ogranicena
ukupnim kasnjenjem
Read-Modlify-Write sekvence operacija
Tipicno oko 1000 ciklusa za DRAM lokaciju globalne memorije

o Hardverska poboljsanja uticu na ovu brzinu

Atomicne operacije se znacajno brze (~10 puta)
nad lokacijama u L2 kesu
o L2 kes je deljen od strane svih blokova niti na SM-u

Jos brze se sprovode nad deljenom memorijom,
sto uobicajeno zahteva algoritamske promene u kodu

ETF Beograd::Multiprocesorski sistemi 58/45

Bolje histogram jezgro (1)

o Resenje za poboljsanje performansi jezgra
u slucaju odredivanja histograma je privatizacija izlaza

Tehnika privatizacije omogucava smanjivanje kasnjenja,
povecanje propusnog opsega i smanjivanje serijalizacije

Mnogo manje zagusenje |
serijalizacija
Visoko zagusenje i Blok 0 Blok 1 Blok N
serijalizacija

Q‘l' NE ﬂ‘l"l'ﬂ

' Kopua

Atomic¢na
aZuriranja

Finalna

Finalna

kopija o
kopija

ETF Beograd::Multiprocesorski sistemi 59/45

Bolje histogram jezgro (2)

o Privatizacija podataka donosi prednosti,
ali i rezijske troskove
Na GPU se privatizacija radi korisS¢enjem deljene memorije

o Prednosti privatizacije
Mnogo manje zagusenije i serijalizacija
kod pristupa privatnim kopijama i finalnoj kopiji rezultata
o Samo niti iz istog bloka pristupaju privatnim brojacima
Performanse mogu da se poboljsaju i do 10x
o Rezijski troskovi privatizacije
Trosak kreiranja i inicijalizacije privatnih kopija
Trosak akumuliranja sadrzaja privatnih kopija
na globalnu kopiju sa finalnim rezultatom

ETF Beograd::Multiprocesorski sistemi 60/45

Bolje histogram jezgro (3)

__global void histo_kernel (unsigned char *buffer,
long size, unsigned int *histo) {
__shared unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;
__syncthreads() ;

int i = threadlIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd(&(private histo[buffer[i]/4), 1);
i += stride;
}
// wait for all other threads in the block to finish
__syncthreads() ;
if (threadIdx.x < 7)

atomicAdd (& (histo[threadIdx.x]), private_histo[threadIdx.x]

ETF Beograd::Multiprocesorski sistemi

61/45

Bolje histogram jezgro (4)

o Privatizacija je mocna i Cesto koriscena tehnika
za paralelizaciju

Operacija koja se sprovodi mora da bude
asocijativna i komutativna

Racunanje histograma jeste takva operacija

o OgraniCenja jezgra za racunanje histograma postoje
Privatni histogrami moraju da budu dovoljno mali da bi stali u
deljenu memoriju

Kod velikih histograma se moze primeniti
delimicna privatizacija histograma u deljenoj memoriji
o Ostatak se onda nalazi u globalnoj memoriji

ETF Beograd::Multiprocesorski sistemi 62/45

Literatura

O

Kaufmann

David Kirk, Wen-mei Hwu, Programming Massively
Parallel Processors: A Hands on Approach, Morgan

o NVIDIA CUDA C Programming Guide 10.2, 2020.
o NVIDIA GPU Teaching Kit 2017

O
O
O

nttp://en.wikipedia.org/wiki/G

Razni materijali i dokumentacija sa NVIDIA sajta

PGPU

nttp://en.wikipedia.org/wiki/C

UDA

ETF Beograd::Multiprocesorski sistemi

63/45

http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/CUDA

	Slide 1: Multiprocesorski sistemi Paralelni algoritmi na CUDA
	Slide 2: Paralelni algoritmi na grafičkom procesoru (1)
	Slide 3: Paralelni algoritmi na grafičkom procesoru (2)
	Slide 4: Problemi paralelnih algoritama
	Slide 5: Blurovanje slike
	Slide 6: Blurovanje slike
	Slide 7: Blurovanje slike
	Slide 8: Blurovanje slike
	Slide 9: RGB u Grayscale konverzija
	Slide 10: RGB u Grayscale konverzija
	Slide 11: RGB u Grayscale konverzija
	Slide 12: Studija slučaja – množenje matrica (1)
	Slide 13: Studija slučaja – množenje matrica (2)
	Slide 14: Smeštanje matrica u C-u
	Slide 15: Studija slučaja – množenje matrica (3)
	Slide 16: Studija slučaja – množenje matrica (4)
	Slide 17: Studija slučaja – množenje matrica (5)
	Slide 18: Nedostaci predloženog rešenja (1)
	Slide 19: Nedostaci predloženog rešenja (2)
	Slide 20: Studija slučaja – množenje matrica (6)
	Slide 21: Studija slučaja – množenje matrica (7)
	Slide 22: Studija slučaja – množenje matrica (8)
	Slide 23: Podeli i sumiraj
	Slide 24: Operacija redukcije (1)
	Slide 25: Operacija redukcije (2)
	Slide 26: Sekvencijalna redukcija
	Slide 27: Paralelna redukcija (1)
	Slide 28: Paralelna redukcija (2)
	Slide 29: Složenost paralelne redukcije
	Slide 30: Paralelna redukcija na GPU (1)
	Slide 31: Paralelna redukcija na GPU (2)
	Slide 32: Paralelna redukcija na GPU (3)
	Slide 33: Paralelna redukcija na GPU (4)
	Slide 34: Naivna paralelna redukcija (1)
	Slide 35: Naivna paralelna redukcija (2)
	Slide 36: Naivna paralelna redukcija (3)
	Slide 37: Naivna paralelna redukcija (4)
	Slide 38: Redukcija bez konflikta (1)
	Slide 39: Redukcija bez konflikta (2)
	Slide 40: Bolje rešenje redukcije (1)
	Slide 41: Bolje rešenje redukcije (2)
	Slide 42: Bolje rešenje redukcije (3)
	Slide 43: Bolje rešenje redukcije (4)
	Slide 44: Bolje rešenje redukcije (5)
	Slide 45: Bolje rešenje redukcije (6)
	Slide 46: Uklanjanje petlji (1)
	Slide 47: Uklanjanje petlji (2)
	Slide 48: Redukcija nad velikim nizovima (1)
	Slide 49: Redukcija nad velikim nizovima (2)
	Slide 50: Određivanje histograma (1)
	Slide 51: Određivanje histograma (2)
	Slide 52: Određivanje histograma (3)
	Slide 53: Određivanje histograma (4)
	Slide 54: Određivanje histograma (5)
	Slide 55: Određivanje histograma (6)
	Slide 56: Bazično histogram jezgro (1)
	Slide 57: Bazično histogram jezgro (2)
	Slide 58: Propusni opseg atomičnih operacija
	Slide 59: Bolje histogram jezgro (1)
	Slide 60: Bolje histogram jezgro (2)
	Slide 61: Bolje histogram jezgro (3)
	Slide 62: Bolje histogram jezgro (4)
	Slide 63: Literatura

