
Multiprocesorski sistemi

Paralelni algoritmi na CUDA

Matija Dodović, Marko Mišić

13S114MUPS, 13E114MUPS

2025/2026.

Paralelni algoritmi
na grafičkom procesoru (1)

 Grafički procesor je data-parallel orijentisan
⚫ Vise hiljada niti se izvršava u paraleli

⚫ Vise hiljada elemenata se obrađuje

⚫ Sve podatke obrađuje isti program

 SPMD model izvršavanja

⚫ Kontrast u odnosu na task-parallel model i
paralelizam na nivou instrukcije (ILP)

 Način razmišljanja mora biti drugačiji i
orijentisan ka podacima:
⚫ Algoritmi se moraju dizajnirati za paralelizam na nivou podataka

⚫ Potrebno je koristiti data-parallel primitive
kao gradivne elemente za efikasno programiranje

⚫ Potrebno je razumeti složenost paralelnih algoritama

ETF Beograd::Multiprocesorski sistemi 2/45

Paralelni algoritmi
na grafičkom procesoru (2)

 Ključni koraci u paralelnom programiranju:

⚫ Pronaći konkurentnost u problemu

⚫ Strukturirati algoritam
tako da se konkurentnost prevede u performanse

⚫ Implementirati algoritam u pogodonom programskom okruženju

⚫ Izvršiti program i podesiti performanse koda
na stvarnom paralelnom sistemu

 Na žalost, ovi koraci nisu podeljeni u nivoe apstrakcije
kojima bi mogli da se bavimo nezavisno jednim od drugih

ETF Beograd::Multiprocesorski sistemi 3/45

Problemi paralelnih algoritama

 Performanse mogu biti drastično umanjeno
zbog velikog broja faktora:

⚫ Režijskog vremena potrebnog za sprovođenje
paralelnog procesiranja

⚫ Disbalansa u opterećenju među procesnim elementima

⚫ Neefikasnim obrascima deljenja podataka

⚫ Zasićenja kritičnih resursa

 Kao što je memorijski propusni opseg

 Pronalaženje i iskorišćavanje paralelizma
često zahteva razmatranje problema iz ugla
koji nije očigledan na prvi pogled

⚫ Computational thinking

ETF Beograd::Multiprocesorski sistemi 4/45

Blurovanje slike

ETF Beograd::Multiprocesorski sistemi 5/45

Blurovanje slike

ETF Beograd::Multiprocesorski sistemi 6/45

Box:
pikseli
koje
obrađuje
jedan blok
niti

Blurovanje slike

 2D kernel

ETF Beograd::Multiprocesorski sistemi 7/45

__global__ void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{

int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
... // obrata jednog box-a

}
}

Blurovanje slike

 Kod za jedan box (BLUR_SIZE – konstanta)

ETF Beograd::Multiprocesorski sistemi 8/45

int pixVal = 0;
int pixels = 0;

// AVG susednih 2xBLUR_SIZE x 2xBLUR_SIZE piksela
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
 for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

 int curRow = Row + blurRow;
 int curCol = Col + blurCol;

 if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
 pixVal += in[curRow * w + curCol];
 pixels++; // Akumulacija

}
 }
}

// out je usrednjeni piskel
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

RGB u Grayscale konverzija

ETF Beograd::Multiprocesorski sistemi 9/45

RGB u Grayscale konverzija

 grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

ETF Beograd::Multiprocesorski sistemi 10/45

RGB u Grayscale konverzija

ETF Beograd::Multiprocesorski sistemi 11/45

#define CHANNELS 3 // imamo 3 kanala - po jedan za svaku boju

// Slika je kodovana tako da je svaki piksel u 3 boje intenziteta [0, 255]

__global__ void colorConvert(unsigned char * grayImage, unsigned char * rgbImage, int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;

int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {

 int grayOffset = y*width + x; // 1D koordinata za grayscale sliku

 // uzeti da RGB slika ima CHANNEL puta kolona nego grayscale slika

 int rgbOffset = grayOffset*CHANNELS;

 unsigned char r = rgbImage[rgbOffset]; // red vrednost piksela

 unsigned char g = rgbImage[rgbOffset + 1]; // green vrednost piksela

 unsigned char b = rgbImage[rgbOffset + 2]; // blue vrednost piksela

 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }

}

Studija slučaja – množenje matrica (1)

 Potrebno je
pomnožiti dve matrice
⚫ Zbog jednostavnosti

pretpostavimo kvadratne

 Jedna nit će biti zadužena za
računanje jednog
elementa
⚫ Svaka nit će

pristupati WIDTH
puta elementima
matrica M i N

12

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ETF Beograd::Multiprocesorski sistemi 12/138

Studija slučaja – množenje matrica (2)

 Tradicionalni sekvencijalni kod:

void MatrixMulOnHost
(float* M, float* N, float* P, int Width) {

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

 float sum = 0;

 for (int k = 0; k < Width; ++k) {

float a = M[i * width + k];

float b = N[k * width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}

ETF Beograd::Multiprocesorski sistemi 13/138

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Smeštanje matrica u C-u

 Matrice se u C-u smeštaju po vrstama
⚫ Matrica će uređaju biti preneta linearizovana

⚫ Svaka nit će proračunati adresu elementa
kome treba da pristupi

ETF Beograd::Multiprocesorski sistemi 14/138

Studija slučaja – množenje matrica (3)

 CUDA program na strani domaćina:

void MatrixMulOnDevice (float* M, float* N, float* P, int Width) {

int size = Width * Width * sizeof(float);

float *Md, *Nd, *Pd;

1. // Allocate and Load M, N to device memory

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

2. //Kernel invocation code – to be shown later

3. // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

ETF Beograd::Multiprocesorski sistemi 15/138

Studija slučaja – množenje matrica (4)

 Jezgro:
__global__ void MatrixMulKernel

(float* Md, float* Nd, float* Pd, int Width) {

// Pvalue is used to store the element of the matrix

// that is computed by the thread

 float Pvalue = 0;

 for (int k = 0; k < Width; ++k) {

 float Melement = Md[threadIdx.y * Width + k];

 float Nelement = Nd[k * Width + threadIdx.x];

 Pvalue += Melement * Nelement;

 }

 Pd[threadIdx.y * Width + threadIdx.x] = Pvalue;

}

ETF Beograd::Multiprocesorski sistemi 16/138

Studija slučaja – množenje matrica (5)

 Jezgro pokreće sledeći kod:
// Setup the execution configuration

dim3 dimGrid(1, 1);

dim3 dimBlock(Width, Width);

// Launch the device computation
threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>
(Md, Nd, Pd, Width);

17

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

ty

tx

k

k

ETF Beograd::Multiprocesorski sistemi 17/138

Nedostaci predloženog rešenja (1)

 Koristi se samo jedan blok niti

⚫ Matrice mogu biti samo ograničene veličine

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

(2, 2)

WIDTH

Md Pd

Nd

ETF Beograd::Multiprocesorski sistemi 18/138

Nedostaci predloženog rešenja (2)

 Jedan blok niti računa matricu Pd

 Svaka nit računa jedan element Pd i pritom:
⚫ Učitava vrstu matrice Md

⚫ Učitava kolonu matrice Nd

⚫ Izvršava jedno množenje i sabiranje
za svaki par elementa iz matrica Md i Nd

⚫ Odnos između računanja i
pristupa (sporoj) globalnoj memoriji je mali (oko 1:1)

 2 operacije

 2 pristupa globalnoj memoriji

 Veličina matrice ograničena brojem niti
dozvoljenom unutar jednog bloka niti
⚫ Ogranično arhitekturom (512/1024 niti)

ETF Beograd::Multiprocesorski sistemi 19/138

Studija slučaja –
množenje matrica (6)

 Rešenje – podeliti matricu
na podmatrice (tiles)
koje će obraditi zasebni blokovi niti
⚫ Svaka nit računa jedan element

⚫ Veličina bloka niti će biti
jednaka veličini podmatrice

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

bx

ETF Beograd::Multiprocesorski sistemi 20/138

Studija slučaja – množenje matrica (7)

 Primer množenja matrice 4x4,
korišćenjem blokova niti dimenzija 2x2 niti

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2 Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

ETF Beograd::Multiprocesorski sistemi 21/138

Studija slučaja – množenje matrica (8)

 Jezgro:
__global__ void MatrixMulKernel

(float* Md, float* Nd, float* Pd, int Width) {

// Calculate the row index of the Pd element and M

int Row = blockIdx.y * TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x * TILE_WIDTH + threadIdx.x;

if ((Row < Width) && (Col < Width)) {

 float Pvalue = 0;

 // Each thread computes one element of the block
submatrix

 for (int k = 0; k < Width; ++k)

 Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];

 Pd[Row * Width + Col] = Pvalue;

}

}

ETF Beograd::Multiprocesorski sistemi 22/138

Podeli i sumiraj

 Partition and Summarize
⚫ Česta algoritamska strategija

za procesiranje velikih skupova podataka na GPU

⚫ Nalikuje MapReduce radnom okviru za distribuiranu obradu

 Tehnika podrazumeva da:
⚫ Ne postoji neki zahtevani poredak obrade elemenata u skupu

 Operacije koje se sprovode su asocijativne i komutativne

⚫ Skup podataka se deli na manje celine (chunks)

⚫ Jedna nit obrađuje jednu celinu

⚫ Redukciono stablo se koristi
da se rezultati kombinuju u krajnji rezultat

 Poslednji korak je tipično najvažniji
u efikasnoj implementaciji na GPU

ETF Beograd::Multiprocesorski sistemi 23/45

Operacija redukcije (1)

 Tipična operacija koja se javlja u paralelnim algoritmima
je operacija redukcije

⚫ Kao što su algoritmi sa logikom Partition and Summarize

 Redukcija prodrazumeva svođenje niza vrednosti
na jednu skalarnu vrednost

⚫ Računanje zbira, proizvoda, makismuma, minimuma,
logičko I/ILI nad svim elementima strukture i sl.

⚫ Upotreba dobro definisane jedinične vrednosti

 Podrazumeva se da je operator
koji se upotrebljava u redukciji asocijativan

⚫ Tehnički, to ne mora biti tačno za aritmetiku u pokretnom zarezu

 U ovom slučaju treba biti pažljiv

ETF Beograd::Multiprocesorski sistemi 24/45

Operacija redukcije (2)

 Radukcije se koriste u velikom broju primena,
mada ne obavezno u paralelnoj formi

⚫ Kod množenja matrice, pojedinačna nit je vršila redukciju
prilikom računanja skalarnog proizvoda vrste i kolone matrice

 Redukcija je potrebna zbog određenih transformacija
koje se obavljaju prilikom paralelizacije koda

⚫ Tipičan primer je privatizacija izlazne lokacije,
kako bi se smanjila potreba za sinhronizacijom

⚫ Umesto da više niti dodaje svoj rezultat u istu lokaciju,
svaka nit dobija svoju privatnu lokaciju

⚫ Konačan rezultat se dobija kombinovanjem vrednosti
privatnih lokacija putem redukcije

ETF Beograd::Multiprocesorski sistemi 25/45

Sekvencijalna redukcija

 Inicijalizuje se rezultat jediničnom vrednošću
redukcione operacije

⚫ 0 za zbir

⚫ 1 za proizvod

⚫ Najmanja ili najveća vrednost za max i min

 Iterira se kroz ulazni niz i sprovodi se
redukciona operacija nad rezultatom i
trenutnom vrednošću elementa na ulazu

⚫ Sprovodi se N redukcionih operacija za N ulaznih vrednosti

⚫ Složenost O(n)

⚫ Računski efikasan algoritam

ETF Beograd::Multiprocesorski sistemi 26/45

Paralelna redukcija (1)

 Neefikasan način da se ovo obavi na GPU
predstavlja sledeći kod:

⚫ Nit 0 iz bloka sabira elemente sekvencijalno

⚫ Ostale niti ne rade ništa

if (threadID == 0) {

float sum = 0;

for (int t = 0; t < n; ++t)

sum += array[t];

}

ETF Beograd::Multiprocesorski sistemi 27/45

Paralelna redukcija (2)

 Da bismo izvršili redukciju N elemenata u paraleli,
možemo koristiti princip stabla

⚫ Redukcija se vrši kroz N-1 operaciju u log(N) koraka

ETF Beograd::Multiprocesorski sistemi 28/45

13

Složenost paralelne redukcije

 Redukcija se obavlja u log(N) paralelnih koraka

⚫ U svakom koraku S,
izvršava se N/2S paralelnih operacija

 Za N=2D, izvršava se S[1..D]2
D-S = N-1 operacija

⚫ Algoritam je računski efikasan, jer ne izvršava
više operacija nego sekvencijalna redukcija

 Sa P niti fizički u paraleli,
vremenska složenost je O(N/P + log N)
⚫ U poređenju sa O(N) za sekvencijalnu redukciju

ETF Beograd::Multiprocesorski sistemi 29/45

Paralelna redukcija na GPU (1)

 Primer sumiranja elemenata vektora

⚫ Vektor se nalazi u globalnoj memoriji uređaja

⚫ Dužina je deljiva veličinom bloka niti

 Prikazujemo redukciju na nivou bloka niti

⚫ Rekurzivno se deli broj niti
na pola u svakom koraku

⚫ Sumiraju se dve vrednosti na nivou niti
u svakom koraku

 Finalna redukcija se može uraditi ponovnim
pozivanjem jezgra ili na domaćinu

ETF Beograd::Multiprocesorski sistemi 30/45

Paralelna redukcija na GPU (2)

 Redukcija se obavlja in-place
korišćenjem deljene memorije

⚫ Pretpostavimo da se vektor nalazi
u globalnoj memoriji uređaja

⚫ Koristi se deljena memorija
za smeštanje međurezultata (vektora parcijalnih suma)

⚫ U svakoj iteraciji dobija se vektor parcijalnih suma

 U svakom koraku smo bliži konačnom rezultatu

⚫ Finalni rezultat se smešta u element 0
u deljenoj memoriji

ETF Beograd::Multiprocesorski sistemi 31/45

ETF Beograd::Multiprocesorski sistemi

Paralelna redukcija na GPU (3)

32/45

Paralelna redukcija na GPU (4)

 U primeru sa slike:

⚫ Svaka nit je odgovorna za jednu (izlaznu) lokaciju
sa parnim indeksom u vektoru parcijalnih suma

⚫ Nakon svakog koraka redukcije,
polovina niti više nije potrebna

⚫ Jedna od ulaznih lokacija za svaku aktivnu nit je
uvek jedna od izlaznih lokacija iz prethodnog koraka

⚫ U svakom koraku se distanca
između ulaznih elementa svake aktivne niti povećava

 Naivna implementacija redukcije

ETF Beograd::Multiprocesorski sistemi 33/45

Naivna paralelna redukcija (1)

__global__ void reduce(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

 // Load shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

 // Do reduction in shared memory

for (unsigned int stride = 1; s < blockDim.x; s *= 2) {

__syncthreads();

int index = 2 * stride * tid;

if (index < blockDim.x) {

sdata[index] += sdata[index + stride];

}

}

 // Thread 0 writes result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

ETF Beograd::Multiprocesorski sistemi 34/45

Memorijski

konflikt

Naivna paralelna redukcija (2)

 Dešavaju se konflikti u deljenoj memoriji

⚫ Dešava se simultani pristup kod indeksiranja niza i to dva puta

⚫ Prvi pristup (sdata[index])

Indeks

Vrednosti

0 1 2 3 4 ... 14 15Thread

IDs
Pomeraj 1

Banka

16 17 18

Niti 0 i 16 pristupaju istoj memorijskoj banki

Niti 1 i 17 pristupaju istoj memorijskoj banki

Niti 2 i 18 pristupaju istoj memorijskoj banki, itd.

0 1 2 3 4 5 6 7 8 9 ... 2728293031 0 1 2 3 4 5 ...

0 1 2 3 4 5 6 7 8 9 ... 2728293031323334353637 ...

10 1 8 -1 0 -2 3 5 -2 -3 ... 7 0 11 0 2 -1 4 11 -5 0 12 ...

Korak 1

ETF Beograd::Multiprocesorski sistemi 35/45

Naivna paralelna redukcija (3)

 Drugi simultani pristup (sdata[index + stride])

Indeksi

Vrednosti

0 1 2 3 4 ... 14 15Nit IDPomeraj 1

Banka

16 17 18

Niti 0 i 8 pristupaju istoj memorijskoj banki

Niti 1 i 9 pristupaju istoj memorijskoj banki

Niti 2 i 10 pristupaju istoj memorijskoj banki, itd.

0 1 2 3 4 5 6 7 8 9 ... 2728293031 0 1 2 3 4 5 ...

0 1 2 3 4 5 6 7 8 9 ... 2728293031323334353637 ...

10 1 8 -1 0 -2 3 5 -2 -3 ... 7 0 11 0 2 -1 4 11 -5 0 12 ...

Korak 1

ETF Beograd::Multiprocesorski sistemi 36/45

Naivna paralelna redukcija (4)

 Prvi simultani pristup (sdata[index])

⚫ 4-ostruki konflikt

Indeksi

Vrednosti

0Nit IDPomeraj 8

Banka

Parne niti pristupaju bankama 0 i 16
Neparne niti pristupaju bankama 8 i 24

0 1 2 3 4 5 6 7 8 9 ... 2728293031 0 1 2 3 4 5 ...

0 1 2 3 4 5 6 7 8 9 ... 2728293031323334353637 ...

10 1 8 -1 0 -2 3 5 -2 -3 ... 7 0 11 0 2 -1 4 11 -5 0 12 ...

41

Korak 3

ETF Beograd::Multiprocesorski sistemi 37/45

...

Redukcija bez konflikta (1)

 Korektna implementacija bez memorijskih konflikta:
for (int s = 1; s < blockDim.x; s *= 2) {

__syncthreads();

if (threadIdx.x % (2 * s) == 0)

sdata[threadID] += sdata[threadIdx.x + s];

}

 Problem je veliki broj divergentnih warp-ova
prilikom izvršavanja ovakvog koda

⚫ Polovina niti (parne niti) će biti aktivna,
a polovina ne (neparne niti)

⚫ Ukoliko postoje grananja unutar warp-a,
sve niti će izvršiti sve putanje, što dovodi do usporenja

ETF Beograd::Multiprocesorski sistemi 38/45

Redukcija bez konflikta (2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Indeksi

Vrednosti

0 2 4 6 8 10 12 14

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

0 4 8 12

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

0 8

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

Nit ID
Korak 1

Pomeraj 1

Korak 2

Pomeraj 2

Korak 3

Pomeraj 4

Korak 4

Pomeraj 8

Nit ID

Nit ID

Nit ID

Vrednosti

Vrednosti

Vrednosti

Vrednosti

ETF Beograd::Multiprocesorski sistemi 39/45

Bolje rešenje redukcije (1)

 Prethodna rešenja iskazuju sledeće probleme:

⚫ Memorijske konflikte (prvo rešenje)

⚫ Divergenciju u kontroli toka

⚫ Slabo iskorišćenje resursa

 Većina niti u warp-u prestaje da bude aktivna
posle nekoliko koraka

⚫ Polovina niti učestvuje samo u učitavanju podataka

 Blok podataka redukuje efektivno N/2 niti

ETF Beograd::Multiprocesorski sistemi 40/45

Bolje rešenje redukcije (2)

 Bolje rešenje redukcije se dobija
primenom sledećih saveta:

⚫ Parcijalne sume treba održavati
u početnim lokacijama niza

⚫ Aktivne niti treba da budu konsekutivne u bloku

 Ideja je da niti pristupaju
nesusednim elementima u bloku koji redukuju

⚫ Moguće s obzirom da su redukcioni operatori
komutativni i asocijativni

ETF Beograd::Multiprocesorski sistemi 41/45

Bolje rešenje redukcije (3)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

Indeksi

Vrednosti

Nit ID

Korak 1

Pomeraj 1

Korak 2

Pomeraj 2

Korak 3

Pomeraj 4

Korak 4

Pomeraj 8

Nit ID

Nit ID

Nit ID

Vrednosti

Vrednosti

Vrednosti

Vrednosti
ETF Beograd::Multiprocesorski sistemi 42/45

Bolje rešenje redukcije (4)

__global__ void reduce(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// load shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// do reduction in shared mem

for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {

if (tid < s) {

sdata[tid] = sdata[tid] + sdata[tid + s];

}

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}
ETF Beograd::Multiprocesorski sistemi 43/45

Bolje rešenje redukcije (5)

 Treba primetiti da nakon učitavanja elementa
u deljenu memoriju samo polovina niti radi redukciju:
for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {

if (tid < s)

sdata[tid] = sdata[tid] + sdata[tid + s];

__syncthreads();

}

 To se može promeniti tako što će svaka nit raditi dva
čitanja i prvo sumiranje u redukciji:
⚫ Broj blokova se tako smanjuje za pola
unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

__syncthreads();

ETF Beograd::Multiprocesorski sistemi 44/45

Bolje rešenje redukcije (6)

__global__ void reduce(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// load shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

__syncthreads();

 // do reduction in shared mem

for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {

if (tid < s) {

sdata[tid] = sdata[tid] + sdata[tid + s];

}

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}
ETF Beograd::Multiprocesorski sistemi 45/45

Uklanjanje petlji (1)

 Samo jedan warp unutar bloka je aktivan
u poslednjih nekoliko koraka redukcije

⚫ Broj iteracija petlje se može smanjiti i
time ukloniti suvišni pozivi __syncthreads()

 Može da se uradi razmotavanje petlje

⚫ Poznata loop unrolling tehnika koju sprovode
prevodioci ili programer

⚫ Eliminišu se skokovi u petlji
ponavljanjem naredbi iz tela petlje

 Optimizacija vreme/prostor

 Povećava dužinu binarnog koda

ETF Beograd::Multiprocesorski sistemi 46/45

Uklanjanje petlji (2)

 Razmotavaju se sve iteracije petlje u kojima učestvuje
samo jedan warp od 32 niti
 for (unsigned int s = blockDim.x/2; s > 32; s >>= 1) {

if (tid < s) {

sdata[tid] += sdata[tid + s];

}

 __syncthreads();

 }

if (tid < 32) sdata[tid] += sdata[tid + 32];

if (tid < 16) sdata[tid] += sdata[tid + 16];

if (tid < 8) sdata[tid] += sdata[tid + 8];

if (tid < 4) sdata[tid] += sdata[tid + 4];

if (tid < 2) sdata[tid] += sdata[tid + 2];

if (tid < 1) sdata[tid] += sdata[tid + 1];

ETF Beograd::Multiprocesorski sistemi 47/45

Redukcija nad velikim nizovima (1)

 Do sada je razmatrana redukcija na nivou bloka podataka
⚫ Nezavisni blokovi niti redukuju jedan blok podataka

iz globalne memorije

⚫ CUDA ne dozvoljava globalnu sinhronizaciju među blokovima

 Potreban način da niti iz različitih blokova
međusobno sarađuju
⚫ Rešenje je iskoristiti višestruke pozive istog jezgra

⚫ Poziv jezgru se može posmatrati
kao globalna sinhorizaciona tačka

 Poziv jezgru troši zanemarljivo režijsko vreme

⚫ Nakon završetka redukcije na nivou pojedinačnih blokova,
treba pozvati jezgro ponovo, sada samo sa jednim blokom

⚫ Alternativno, poslednji korak se može izvršiti na CPU

ETF Beograd::Multiprocesorski sistemi 48/45

Redukcija nad velikim nizovima (2)

 Primer redukcije u više nivoa
⚫ Tiled algoritam

⚫ Svaki blok niti redukuje jedan podblok podataka iz ulaznog niza

⚫ Međurezultati se smeštaju u globalnu memoriju i
koriste kao ulazni podaci za sledeći poziv jezgru

⚫ Postupak se ponavlja onoliko puta koliko je potrebno

ETF Beograd::Multiprocesorski sistemi 49/45

Određivanje histograma (1)

 Veoma često je potrebno odrediti statistiku pojavljivanja
elemenata na skupu elemenata

⚫ Statistiku pojavljivanja pojedinačnih elemenata

⚫ Statistiku pojavljivanja elemenata klasifikovanih
u određene podskupove ili opsege (bins)

 Bazično rešenje:

⚫ Koristiti niz brojača inicijalizovanih na 0

⚫ Za svaki element u skupu, iskoristiti vrednost da se identifikuje
odgovarajući brojač koji treba inkrementirati

 Efikasno rešenje na grafičkom procesoru zahteva
dosta drugačiji pristup od dosadašnjih

⚫ Zbog postojanja interferencije niti na izlazu

ETF Beograd::Multiprocesorski sistemi 50/45

Određivanje histograma (2)

 Primer određivanja histograma stringa
Programming Massively Parallel Processors
⚫ Pretpostaviti da svaki brojač predstavlja

četiri uzastopna slova engleskog alfabeta
 a-d, e-h, i-l, m-p, q-t, u-x, y-z

⚫ Za svaki karakter ulaznog stringa treba inkrementirati
odgovarajući brojač

ETF Beograd::Multiprocesorski sistemi 51/45

Određivanje histograma (3)

 Bazično rešenje na grafičkom procesoru

⚫ Podeliti ulazni niz na blokove (tile)

⚫ Jedna nit će biti zadužena za jedan element bloka

⚫ Nit će inkrementirati odgovarajući brojač

⚫ Uzastopne niti pristupaju uzastopnim elementima
kako bi se obezbedio sjedinjeni pristup

⚫ Po potrebi, niti ponavljaju postupak

ETF Beograd::Multiprocesorski sistemi 52/45

Interleaved partitioning

Određivanje histograma (4)

 Prvi blok niti

ETF Beograd::Multiprocesorski sistemi 53/45

…

Određivanje histograma (5)

 Drugi blok niti

⚫ Primećuje se race condition problem kod pristupa brojačima!

ETF Beograd::Multiprocesorski sistemi 54/45

…

Određivanje histograma (6)

 Način podele podataka po nitima je dobar

⚫ Dobro se koristi propusni opseg

 Međutim, postoji utrkivanje (hazard)
prilikom pristupa brojačima

⚫ Dešava se Read-Modify-Write sekvenca operacija

⚫ Mora se sprovesti atomično

 Rešenje je u korišćenju atomičnih operacija
dostupnih u okviru CUDA jezgra

⚫ Na hardveru koji ih podržava

ETF Beograd::Multiprocesorski sistemi 55/45

Bazično histogram jezgro (1)

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

 // stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

int alphabet_position = buffer[i] – “a”;

if (alphabet_position >= 0 && alpha_position < 26)

atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;

}

}

ETF Beograd::Multiprocesorski sistemi 56/45

Bazično histogram jezgro (2)

 Predstavljeno rešenje je korektno
⚫ Međutim, postoji nekoliko važnih nedostataka

 Atomične operacije konzumiraju značajan propusni opseg
⚫ Atomična operacija nad DRAM lokaciom počenje sa čitanjem

koje ima kašnjenju od nekoliko stotina ciklusa

⚫ Atomična operacija nad DRAM lokaciom završava se pisanjem
koje ima kašnjenju od nekoliko stotina ciklusa

⚫ U međuvremenu, nijedna nit ne može da pristupi lokaciji

 Svaka Read-Modify-Write sekvenca operacija prouzrokuje
dvostruko kašnjenje u pristupu memoriji
⚫ Više pristupa istoj lokaciji prouzrokuje serijalizaciju

ETF Beograd::Multiprocesorski sistemi 57/45

atomic operation N atomic operation N+1

time

DRAM read latency DRAM read latencyDRAM write latency DRAM write latency

Propusni opseg atomičnih operacija

 Propusni opseg atomičnih operacija je limitiran

⚫ Zavisi od brzine kojom atomična operacija može da se sprovede

 Brzina sprovođenja atomične operacije je ograničena
ukupnim kašnjenjem
Read-Modify-Write sekvence operacija

⚫ Tipično oko 1000 ciklusa za DRAM lokaciju globalne memorije

 Hardverska poboljšanja utiču na ovu brzinu

⚫ Atomične operacije se značajno brže (~10 puta)
nad lokacijama u L2 kešu

 L2 keš je deljen od strane svih blokova niti na SM-u

⚫ Još brže se sprovode nad deljenom memorijom,
što uobičajeno zahteva algoritamske promene u kodu

ETF Beograd::Multiprocesorski sistemi 58/45

Bolje histogram jezgro (1)

 Rešenje za poboljšanje performansi jezgra
u slučaju određivanja histograma je privatizacija izlaza

⚫ Tehnika privatizacije omogućava smanjivanje kašnjenja,
povećanje propusnog opsega i smanjivanje serijalizacije

ETF Beograd::Multiprocesorski sistemi 59/45

Finalna
kopija

…Block 0 Block 1 Block N

Atomična

ažuriranja

Kopija
0

Kopija
1

Finalna
kopija

Kopija
N

…

Blok 0 Blok 1 Blok N

…

Visoko zagušenje i
serijalizacija

Mnogo manje zagušenje i
serijalizacija

Bolje histogram jezgro (2)

 Privatizacija podataka donosi prednosti,
ali i režijske troškove

⚫ Na GPU se privatizacija radi korišćenjem deljene memorije

 Prednosti privatizacije

⚫ Mnogo manje zagušenje i serijalizacija
kod pristupa privatnim kopijama i finalnoj kopiji rezultata

 Samo niti iz istog bloka pristupaju privatnim brojačima

⚫ Performanse mogu da se poboljšaju i do 10x

 Režijski troškovi privatizacije

⚫ Trošak kreiranja i inicijalizacije privatnih kopija

⚫ Trošak akumuliranja sadržaja privatnih kopija
na globalnu kopiju sa finalnim rezultatom

ETF Beograd::Multiprocesorski sistemi 60/45

Bolje histogram jezgro (3)

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo) {

__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;

__syncthreads();

int i = threadIdx.x + blockIdx.x * blockDim.x;

 // stride is total number of threads

int stride = blockDim.x * gridDim.x;

while (i < size) {

atomicAdd(&(private_histo[buffer[i]/4), 1);

i += stride;

}

 // wait for all other threads in the block to finish

__syncthreads();

if (threadIdx.x < 7)

atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x]);

}

ETF Beograd::Multiprocesorski sistemi 61/45

Bolje histogram jezgro (4)

 Privatizacija je moćna i često korišćena tehnika
za paralelizaciju

⚫ Operacija koja se sprovodi mora da bude
asocijativna i komutativna

⚫ Računanje histograma jeste takva operacija

 Ograničenja jezgra za računanje histograma postoje

⚫ Privatni histogrami moraju da budu dovoljno mali da bi stali u
deljenu memoriju

⚫ Kod velikih histograma se može primeniti
delimična privatizacija histograma u deljenoj memoriji

 Ostatak se onda nalazi u globalnoj memoriji

ETF Beograd::Multiprocesorski sistemi 62/45

Literatura

 David Kirk, Wen-mei Hwu, Programming Massively
Parallel Processors: A Hands on Approach, Morgan
Kaufmann

 NVIDIA CUDA C Programming Guide 10.2, 2020.

 NVIDIA GPU Teaching Kit 2017

 Razni materijali i dokumentacija sa NVIDIA sajta

 http://en.wikipedia.org/wiki/GPGPU

 http://en.wikipedia.org/wiki/CUDA

ETF Beograd::Multiprocesorski sistemi 63/45

http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/CUDA

	Slide 1: Multiprocesorski sistemi Paralelni algoritmi na CUDA
	Slide 2: Paralelni algoritmi na grafičkom procesoru (1)
	Slide 3: Paralelni algoritmi na grafičkom procesoru (2)
	Slide 4: Problemi paralelnih algoritama
	Slide 5: Blurovanje slike
	Slide 6: Blurovanje slike
	Slide 7: Blurovanje slike
	Slide 8: Blurovanje slike
	Slide 9: RGB u Grayscale konverzija
	Slide 10: RGB u Grayscale konverzija
	Slide 11: RGB u Grayscale konverzija
	Slide 12: Studija slučaja – množenje matrica (1)
	Slide 13: Studija slučaja – množenje matrica (2)
	Slide 14: Smeštanje matrica u C-u
	Slide 15: Studija slučaja – množenje matrica (3)
	Slide 16: Studija slučaja – množenje matrica (4)
	Slide 17: Studija slučaja – množenje matrica (5)
	Slide 18: Nedostaci predloženog rešenja (1)
	Slide 19: Nedostaci predloženog rešenja (2)
	Slide 20: Studija slučaja – množenje matrica (6)
	Slide 21: Studija slučaja – množenje matrica (7)
	Slide 22: Studija slučaja – množenje matrica (8)
	Slide 23: Podeli i sumiraj
	Slide 24: Operacija redukcije (1)
	Slide 25: Operacija redukcije (2)
	Slide 26: Sekvencijalna redukcija
	Slide 27: Paralelna redukcija (1)
	Slide 28: Paralelna redukcija (2)
	Slide 29: Složenost paralelne redukcije
	Slide 30: Paralelna redukcija na GPU (1)
	Slide 31: Paralelna redukcija na GPU (2)
	Slide 32: Paralelna redukcija na GPU (3)
	Slide 33: Paralelna redukcija na GPU (4)
	Slide 34: Naivna paralelna redukcija (1)
	Slide 35: Naivna paralelna redukcija (2)
	Slide 36: Naivna paralelna redukcija (3)
	Slide 37: Naivna paralelna redukcija (4)
	Slide 38: Redukcija bez konflikta (1)
	Slide 39: Redukcija bez konflikta (2)
	Slide 40: Bolje rešenje redukcije (1)
	Slide 41: Bolje rešenje redukcije (2)
	Slide 42: Bolje rešenje redukcije (3)
	Slide 43: Bolje rešenje redukcije (4)
	Slide 44: Bolje rešenje redukcije (5)
	Slide 45: Bolje rešenje redukcije (6)
	Slide 46: Uklanjanje petlji (1)
	Slide 47: Uklanjanje petlji (2)
	Slide 48: Redukcija nad velikim nizovima (1)
	Slide 49: Redukcija nad velikim nizovima (2)
	Slide 50: Određivanje histograma (1)
	Slide 51: Određivanje histograma (2)
	Slide 52: Određivanje histograma (3)
	Slide 53: Određivanje histograma (4)
	Slide 54: Određivanje histograma (5)
	Slide 55: Određivanje histograma (6)
	Slide 56: Bazično histogram jezgro (1)
	Slide 57: Bazično histogram jezgro (2)
	Slide 58: Propusni opseg atomičnih operacija
	Slide 59: Bolje histogram jezgro (1)
	Slide 60: Bolje histogram jezgro (2)
	Slide 61: Bolje histogram jezgro (3)
	Slide 62: Bolje histogram jezgro (4)
	Slide 63: Literatura

