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Uvod u GPU računarstvo (1)

 Grafički procesori (Graphics Processing Unit, GPU) su 
prvobitno bili namenjeni za obradu grafike

⚫ Specijalizovani za računski intenzivne, grafičke algoritme

 Narastajuća industrija video igara, 
kao i potreba u komercijalnim aplikacijama je izvršila 
veliki pritisak na razvoj grafičkih procesora

⚫ 3D grafika (početkom ‘90ih)

 Vremenom su ovi procesori evoluirali 
u paralelne i viskoprogramabilne procesore

⚫ Orijentisani su ka obradi velike količine podataka
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Uvod u GPU računarstvo (2)

 Grafički procesori se koriste 
za računanja opšte namene u poslednjih 20+ godina

 Taj trend se zove računanje opšte namene
korišćenjem grafičkih procesorskih jedinica
⚫ General-Purpose computation on GPUs (GPGPU)

 Heterogeno računarstvo
⚫ Korišćenje računskih resursa koji najbolje odgovaraju poslu
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Uvod u GPU računarstvo (3)

 Širok spektar primena
⚫ Fizičke simulacije (computational physics)
⚫ Hemijske simulacije (computational chemistry)
⚫ Biološke simulacije (life sciences)
⚫ Finansijska izračunavanja (computational finance)
⚫ Računarska vizija (computer vision)
⚫ Obrada signala
⚫ Baze podataka
⚫ Mašinsko učenje i veštačka inteligencija (dominantno!)
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CUDA performanse za različite aplikacije

CUDA
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Zašto koristiti grafičke procesore?

 Grafički procesori su postali vrlo fleksibilni i dostupni
⚫ Računska snaga: 1 TFLOPS vs. 100 GFLOPS
⚫ Propusni opseg: ~10x veći
⚫ Nalaze se u gotovo svakom računaru

Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens
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CPU vs. GPU (1) 

 Fundamentalna razlika između centralnog i 
grafičkog procesora je u njihovom dizajnu
⚫ CPU je orijentisan 

ka tradicionalnom izvršenju poslova

⚫ GPU je orijentisan ka obradi podataka
 Mnogo više tranzistora je namenjeno obradi podataka 

nego keširanju i kontroli toka

CPU GPU
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CPU vs. GPU (2)

 Centralni procesor je orijentisan 
ka smanjenju kašnjenja (latency)
⚫ Hijerarhija keš memorija

 Veliki keševi koji konvertuju
spore pristupe memoriji
u brže pristupe keš memorijama 

 Hijerarhija nivoa - L1, L2, L3...

⚫ Sofisticirana kontrola toka

 Predviđanje skokova

 Prosleđivanje podataka

⚫ Manji broj procesora

 Moćne ALU jedinice

 Operacije se izvršavaju veoma brzo

⚫ Pipeline veličine 20 - 30 faza

Cache
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ALU

ALU

DRAM
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CPU vs. GPU (3)

 Grafički procesori su orijentisani 
ka povećanju propusnog opsega 
(throughput)
⚫ Veliki broj procesnih jedinica

 Energetski efikasnije ALU jedinice

⚫ Veoma male keš memorije

 Instrukcijski keš

 Povećavanje
propusnog opsega memorije

⚫ Jednostavna kontrola toka

 Nema predviđanja skokova

 Nema prosleđivanja podataka

 Potreban veliki broj niti da bi se sakrila kašnjenja!

DRAM
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Za šta je GPU pogodan? (1)

 Grafički procesor je specijalizovan za 
računski intenzivna, paralelna izračunavanja
⚫ Pogodan za računanja data-parallel tipa 

⚫ Isti skup instrukcija se izvršava 
nad velikim brojem podataka istovremeno

 Smanjena je potreba za 
sofisticiranom kontrolom toka

⚫ Veliki broj izračunavanja se odigrava 
u odnosu na jedan pristup memoriji

 Sva kašnjenja prilikom pristupa memoriji 
se mogu sakriti intenzivnim izračunavanjem 
umesto velikim keševima podataka
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Za šta je GPU pogodan? (2)

 Centralni i grafički procesor 
se najbolje koriste u režimu koprocesiranja

 Centralni procesor treba koristiti 
za sekvencijalni deo aplikacije, gde je bitno kašnjenje
⚫ CPU je najmanje red veličine brži od GPU 

prilikom izvršavanja sekvencijalnog koda (10x+ puta)
 Ulaz, izlaz, priprema podataka...

 Grafički procesor treba koristiti 
za delove koda koji troše najviše vremena
⚫ Paralelni deo aplikacije

⚫ Tipično za ubrzanje kritičnih operacija 
koje obrađuju veliku količinu podataka (10x+ puta)
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Istorijat GPU programiranja (1)

 Grafički procesori su postali programabilni 
početkom 2000-ih sa pojavom 
programabilnih shader-a

 Programiranje je vršeno kroz grafičke API-je
⚫ OpenGL, DirectX...
⚫ Mnoga ograničenja

Hardverska i softverska 
(pristup memoriji, API overhead...)

 Jezik Brook (Stanford, 2004) je prvi doneo GPGPU 
programiranje
⚫ Ograničeni dometi
⚫ Zavisnost od grafičkih API-ja
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Istorijat GPU programiranja (2)

 NVIDIA CUDA (2007)
⚫ Najzreliji standard, prisutan do danas, CUDA 13.1 (2026)

 AMD/ATI pokušaji
⚫ Brook+, FireStream, Close-To-Metal, ROCm 7.1 (2025)

 Microsoft DirectCompute (DirectX 10/DirectX 11)
 OpenCompute Language, OpenCL (2009)

⚫ Otvoreni standard koji je podržala grupa kompanija
⚫ OpenCL 3.0 (2025)

 Podrška za paralelizaciju direktivama
⚫ OpenACC 1.0 (2011), 3.4 (2025)
⚫ OpenMP 4.0 (2013), 5.0 (2018), 6.0 (2024)

 Intel OneAPI i SYCL/Data Parallel C++ (2019)
 Programiranje kroz biblioteke i namenske radne okvire
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GPU programiranje danas (1)

 Tri načina za ubrzavanje rada aplikacija na GPU
⚫ Korišćenjem biblioteka i radnih okvira

 cuBLAS, cuFFT, Magma, OpenCV, Thrust (CUDA STL), kokkos
 TensorFlow/TensorRT, cuDNN

⚫ Korišćenjem prevodilačkih direktiva
 OpenACC, OpenMP

⚫ Korišćenjem proširenja programskih jezika
 CUDA, OpenCL, OneAPI, ROCm/HIP

Aplikacije

Biblioteke

Jednostavno upotrebe

Dobre performanse

Proširenja 
programskih 

jezika

Najbolje performanse

Fleksibilnost
Jednostavno upotrebe

Portabilnost

Prevodilačke
direktive
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GPU programiranje danas (2)

 Dostupno u velikom broju programskih jezika
⚫ Različiti nivoi i načini programiranja
⚫ High-level vs. low-level pristupi
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GPU programiranje danas (3)

 Veliki broj biblioteka sa GPU akceleracijom
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CUDA pregled (1)

 Compute Unified Device Architecture (CUDA)
⚫ Hardverska i softverska arhitektura 

za upravljanje izračunavanjem opšte namene
na grafičkim procesorskim jedinicama

⚫ Dostupna na NVIDIA grafičkim procesorima
 API dostupan i na drugim akceleratorima 

kroz 3rd party podršku

 Opštenamenski programski model
⚫ SIMD / SPMD

⚫ Korisnik pokreće grupe niti na grafičkom procesoru
 Programer eksplicitno izražava data-parallel model 

kroz izvršavanje pomoću niti (DLP via TLP)
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CUDA pregled (2)

 Prati je odgovarajuća 
softverska podrška
⚫ Drajver i odgovarajući API

⚫ Ekstenzija jezika C 
za lakše programiranje

⚫ Alati 
 Prevodilac, debager, profajler

⚫ Gotov softver i biblioteke
 GPU Computing SDK

 CUFFT, CUBLAS...

 Nezavisni proizvođači

GPU

CPU

CUDA Runtime

CUDA Libraries

(FFT, BLAS)

CUDA Driver

Application
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CUDA pregled (3)

 Aktuelne arhitekture NVIDIA GPU
⚫ Definiše skup mogućnosti koje podržava hardver

 Tesla, Fermi, Kepler, Maxwell, Pascal, Volta, 
Turing, Ampere, Ada Lovelace, Hopper, Blackwell, Rubin

⚫ Major i minor revizije arhitekture koje definišu 
karakteristike hardvera i instrukcijskog seta
 Compute capability (najnovije 12.1)

 Aktuelna verzija CUDA Toolkit-a je 13.1
⚫ Definiše nivo softverske podrške

 Prevodilac, alati, biblioteke

⚫ Definiše mogućnosti na nivou proširenja jezika
 Upravljanje memorijom, ugrađene funkcije, itd.
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Programski model (1)

 Grafički procesor se posmatra 
kao koprocesor (uređaj, compute device) 
u odnosu na centralni procesor (domaćin, host)
⚫ Izvršava računski intenzivan deo aplikacije

⚫ Izvršava jako veliki broj niti u paraleli

⚫ Poseduje svoju sopstvenu DRAM memoriju

 Deo aplikacije koji vrši obradu nad podacima izvršava se 
u vidu jezgra (kernel) koristeći veliki broj niti
⚫ GPU niti su lake (lightweight)

 Imaju veoma mali režijski trošak prilikom stvaranja

⚫ GPU su potrebne hiljade niti za punu efikasnost

 Višejezgarnom procesoru je potrebno samo nekoliko
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Programski model (2)

 CUDA program čine integrisani delovi koda 
za centralni i grafički procesor

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);
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Izvršni model (1)

 CUDA jezgro se izvršava pomoću niza niti 
raspoređenih u odgovarajuću rešetku (grid)
⚫ Sve niti izvršavaju isti kod 

 SIMD/SPMD/SIMT model izvršavanja
⚫ Svaka nit ima jedinstveni identifikator (indeks) koji koristi 

da bi vršila pristup memoriji i donosila odluke

76543210

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID
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Izvršni model (2)

 Niti unutar rešetke su podeljene u nezavisne blokove

⚫ Svaki blok ima jedinstven identifikator unutar rešetke

⚫ Niti unutar istog bloka mogu da sarađuju

 Koristeći sinhronizaciju, atomske operacije i deljenu memoriju

⚫ Niti iz različitih blokova ne mogu da sarađuju

⚫ Omogućava skalabilnost izvršavanja na različitom hardveru

…

float x = 

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x = 

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 1

…

float x = 

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

76543210 76543210 76543210
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Izvršni model (3)

 Jezgro se konfiguriše 
prilikom svakog poziva

⚫ Zadaju se dimenzije 
bloka i rešetke

⚫ Blok i rešetka mogu biti 
višedimenzionalni

 1D, 2D ili 3D

 Niti i blokovi imaju 
identifikatore (indekse)

⚫ Tako da mogu da odluče 
nad kojim podacima da rade
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Izvršni model (4)

 Za svaki blok se može odrediti 
indeks unutar rešetke
⚫ Block ID: 1D, 2D, 3D

⚫ blockIdx promenljiva

 Za svaku nit se može odrediti 
indeks unutar bloka
⚫ Thread ID: 1D, 2D, 3D 

⚫ threadIdx promenljiva

 Pojednostavljuje pristup 
memoriji pri obradi 
višedimenzionalnih struktura
⚫ Obrada slika i sl.
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Primer sabiranja dva vektora (1)

 Tradicionalni sekvencijalni C kod:

// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n){

for (i = 0, i < n, i++)

C[i] = A[i] + B[i];

}

int main(){

// Memory allocation for h_A, h_B, and h_c

// I/O to read h_A and _B

…

vecAdd(h_A, h_B, h_C, N);

}
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Primer sabiranja dva vektora (2)

 Na grafičkom procesoru, 
svaka nit će biti zadužena za izračunavanje 
jednog elementa rezultujućeg vektora

A[0] A[1] A[2] ... A[n]

B[0] B[1] B[2] ... B[n]

C[0] C[1] C[2] ... C[n]

+ + + +
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Primer sabiranja dva vektora (3)

 Kod koji će izvršavati centralni procesor 
mora biti restrukturiran:

void vecAdd(float* A, float* B, float* C, int n){

intsize = n* sizeof(float);

float* devA, devB, devC;

…

1. // Allocate device memory for A, B, and C

2. // copy A and B to device memory

3. // Kernel launch code – to have the device

// to perform the actual vector addition

4. // Copy vector C from the device memory

5. // Free device vectors

}
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 Svaka nit može da:
⚫ Čita/piše po registrima 

dodeljenim na nivou niti

⚫ Čita/piše po lokalnoj 
(privatnoj) memoriji na 
nivou niti

⚫ Čita/piše po deljenoj 
memoriji na nivou bloka

⚫ Čita/piše po globalnoj 
memoriji na nivou uređaja

⚫ Čita konstantnu memoriju 
na nivou uređaja

⚫ Čita memoriju za 
teksture na nivou uređaja

Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers
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Shared Memory

Local

Memory

Thread (0, 0)
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Memory

Thread (1, 0)
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Host

Memorijski model (1)

ETF Beograd::Multiprocesorski sistemi::GPU računarstvo 29/146



Memorijski model (2)

 Centralni procesor može 
da čita/piše po globalnoj, 
konstantnoj i memoriji za 
teksture grafičkog 
procesora
⚫ Sve su smeštene u DRAM

 Sadržaj globalne 
memorije je dostupan 
svim nitima
⚫ Pristup ima 

veliko kašnjenje

Device

Global Memory (DRAM)

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Global Memory (DRAM)
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Memorijski model (3)

 Deljena memorija se može koristiti 
na nivou bloka niti
⚫ Male veličine (16-96 KB)
⚫ Za red veličine brži pristup 

od globalne memorije
⚫ Niti su zadužene da 

eksplicitno učitaju podatke

 Deljena memorija omogućava da 
podaci budu bliži ALU jedinicama
⚫ Smanjuje potrebu 

za pristup globalnoj memoriji
⚫ Smeštanje međurezultata 

sa malim kašnjenjem
⚫ Povećava intenzitet računanja time 

što su podaci bliže procesorima
⚫ Povećava 

memorijski propusni opseg

Shared
Memory

Thread
Execution
Manager

ALU

Control

ALU

Control

ALU

Control

ALU

DRAM

P1

P2

P3

P4

P5

Shared

Data
Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4
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Upravljanje memorijom

 Centralni i grafički procesor poseduju
odvojene memorijske prostore

 CUDA podržava dva režima upravljanja memorijom 
⚫ Implicitni i eksplicitni

 U eksplicitnom režimu programer vrši 
alokaciju memorije i 
odgovarajuće memorijske transfere
⚫ Alokacija memorije na strani domaćina se vrši 

statički ili standardnim C pozivima

 U implicitnom režimu programer vrši 
samo alokaciju memorije
⚫ Na strani domaćina i uređaja
⚫ Zahteva podršku CUDA Unified memory
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Alokacija memorije (1)

 Vrši se putem odgovarajućih poziva API funkcija
⚫ Postoje različite varijante, u zavisnosti od načina 

smeštanja podataka u memoriju

 cudaMalloc()

⚫ Alocira objekat u globalnoj memoriji uređaja

⚫ Zahteva dva parametra
 Adresu pointera na alocirani objekat

 Veličinu alociranog objekta u bajtovima

 cudaFree()

⚫ Oslobađa objekat iz memorije uređaja

⚫ Zahteva pointer na objekat
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Alokacija memorije (2)

 cudaMallocManaged()

⚫ Podrška za Unified memory

⚫ Alocira objekat na domaćinu i 
u globalnoj memoriji uređaja

⚫ Zahteva dva parametra
 Adresu pointera na alocirani objekat

 Veličinu alociranog objekta u bajtovima

 Memorijski transferi se dešavaju u pozadini
⚫ Izvršno okruženje ih samo vrši

⚫ Zahteva upotrebu sinhronizacije 
pre upotrebe rezultujućeg objekta
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Alokacija memorije (2)

 Alokacija memorije na strani domaćina se vrši 
statički ili standardnim C pozivima

 Primer alokacije memorije za sabiranje dva vektora:
#define N 256

...

int A[N], B[N], C[N];

int size = N*sizeof(int); 

int *devA, *devB, *devC;

...

cudaMalloc( (void**)&devA, size) );

cudaMalloc( (void**)&devB, size );

cudaMalloc( (void**)&devC, size );

...

// Memory transfers and kernel launch

...

cudaFree(devA);

cudaFree(devB);

cudaFree(devC);

ETF Beograd::Multiprocesorski sistemi::GPU računarstvo 35/146



Memorijski transferi (1)

 Za prenos podataka između domaćina i uređaja, 
kao i unutar samog uređaja postoje odgovarajući pozivi
⚫ Različite varijante, u zavisnosti od organizacije podataka
⚫ Sinhroni/asinhroni i blokirajući/neblokirajući transferi

 cudaMemcpy()

⚫ Obavlja memorijske transfere
⚫ Zahteva četiri parametra

 Pokazivač na odredište
 Pokazivač na izvor
 Veličinu podataka koji se prenose u bajtovima
 Tip transfera

⚫ Tipovi transfera
 Host to Host (cudaMemcpyHostToHost)
 Host to Device (cudaMemcpyHostToDevice)
 Device to Host (cudaMemcpyDeviceToHost)
 Device to Device (cudaMemcpyDeviceToDevice)
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Memorijski transferi (2)

 Primer memorijskih transfera prilikom sabiranja dva 
vektora:
#define N 256

...

int A[N], B[N], C[N];

int size = N*sizeof(int); 

int *devA, *devB, *devC;

...

// Device memory allocation

...

cudaMemcpy( devA, A, size, cudaMemcpyHostToDevice);

cudaMemcpy( devB, B, size, cudaMemcpyHostToDevice);

...

// Kernel launch

...

cudaMemcpy( C, devC, size, cudaMemcpyDeviceToHost);

...

// Free device memory
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Deklaracija CUDA jezgra

 Kod koji se izvršava na grafičkom procesoru se 
piše u vidu odgovarajuće funkcije – jezgra
__global__ 

void vecAdd(int *devA, int *devB, int *devC, int n);

 Funkcije - jezgra imaju sledeće osobine
⚫ Definišu se kvalifikatorom __global__

⚫ Moraju biti void funkcije

⚫ Parametri jezgra mogu biti skalarni podaci ili 
pokazivači na podatke alocirane na uređaju
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Pozivanje CUDA jezgra (1)

 Jezgro mora biti pozvano pomoću 
odgovarajuće izvršne konfiguracije

⚫ Zadaje se pomoću sintaksne ekstenzije jezika C, 
pomoću trostrukih zagrada <<< i >>>

myKernel<<< n, m >>>(arg1, … );

⚫ Parametri n i m definišu organizaciju 

blokova niti na nivou rešetke i niti na nivou bloka

⚫ Postoje još dva opciona parametra

 Za eksplicitno rezervisanje deljene memorije na nivou bloka

 Za upravljanje tokovima (streams)

 Svaki poziv jezgru je asinhron

⚫ Kontrola se odmah vraća centralnom procesoru
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Pozivanje CUDA jezgra (2)

 Primer poziva jezgra:

⚫ Dvodimenzionalna rešetka 64x128

⚫ Dvodimenzionalni blok 32x8

__global__ void KernelFunc(...);

dim3   DimGrid(64, 128);    // 8192 thread blocks 

dim3   DimBlock(32, 8);   // 256 threads per block 

KernelFunc<<< DimGrid, DimBlock >>>(...);

⚫ Tip dim3 je ugrađeni CUDA tip

⚫ Unutar kernela svaka nit određuje podatke nad kojima će raditi 
pomoću ugrađenih promenljivih threadIdx i blockIdx
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Primer sabiranje dva vektora (4)

 Kompletan program

#define N 1024

void vecAdd(float* A, float* B, float* C, int n);

int main (int argc, char **argv ) {

int size = N *sizeof( int);

int A[N], B[N], C[N];

// Load arrays

vecAdd(A, B, C, N);

// Process results

return 0;

}
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Primer sabiranje dva vektora (5)

void vecAdd(float* A, float* B, float* C, int n){

int size = n * sizeof(float);

float *devA, *devB, *devC;

cudaMalloc((void **) &devA, size);

cudaMemcpy(devA, A, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &devB, size);

cudaMemcpy(devB, B, size, cudaMemcpyHostToDevice);

cudaMalloc((void **) &devC, size);

// Run ceil(N/256) blocks of 256 threads each

vecAddKernel<<<ceil(N/256), 256>>>(devA, devB, devC, n);

cudaMemcpy(C, devC, size, cudaMemcpyDeviceToHost);

cudaFree(devA); cudaFree(devB); cudaFree(devC);

}
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Primer sabiranje dva vektora (6)

__global__ void vecAddKernel

(float* devA, float* devB, float* devC, int n){

int idx =

blockIdx.x * blockDim.x + threadIdx.x ;

if(idx < n) 

devC[idx] = devA[idx] + devB[idx];

}

 Svaka nit računa indeks rezultujućeg elementa 
koji treba da izračuna
⚫ Na osnovu blockDim.x i blockIdx.x određuje pomeraj bloka 

u odnosu na početak niza

⚫ Na osnovu threadIdx.x određuje “globalni ID” 
konkretnog elementa koji treba da obradi
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Primer sabiranje dva vektora (7)

 Primer sabiranja dva niza od 32 elementa:
⚫ Jednodimenzionalni blok i rešetka

gridDim(4, 1, 1)

blockDim(8, 1, 1)

 Indeks konkretnog elementa koji 
svaka nit treba da obradi se dobija kao:
idx = blockDim.x * blockIdx.x + threadIdx.x

 Za konkretnu nit 2 u bloku 3:
idx = 3*8 + 2 = 26

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Global ID 26
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CUDA API

 CUDA aplikativni programabilni interfejs (API) je 
ekstenzija ANSI standarda jezika C

⚫ Ekstenzija se sastoji od proširenja jezika C i 
izvršne biblioteke (runtime)

⚫ Proširenja su načinjene za delove koda 
namenjene izvršavanju na grafičkom procesoru

 Za određene funkcionalnosti postoji podrška u hardveru

 Izvršna biblioteka implementira:

⚫ Podskup C funkcija koje mogu da se izvršavaju 
i na sistemu domaćinu i na uređaju

⚫ Skup funkcija za upravljanje i kontrolu uređaja

⚫ Skup funkcija specifičnih za uređaj (intrinsics)
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CUDA funkcije (1)

 CUDA deklaracije funkcija
⚫ Jezgra moraju imati kvalifikator __global__

⚫ Kvalifikator __host__ označava funkcije 

koje se izvršavaju samo na strani domaćina

⚫ Kvalifikator __device__ označava funkcije 

koje se izvršavaju samo na strani uređaja

⚫ Kvalifikatori __host__ i __device__ se mogu koristiti zajedno

Izvršava: Poziva:

__device__ float deviceFunc() uređaj uređaj

__global__ void  kernelFunc() uređaj domaćin

__host__   float hostFunc() domaćin domaćin
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CUDA funkcije (2)

 Ograničenja CUDA funkcija
⚫ __device__ funkcijama se ne može uzeti adresa

 One se najčešće implementiraju kao inline funkcije

⚫ Za funkcije koje se izvršavaju na uređaju:
 Ograničeno dozvoljena rekurzija

⚫ Hardversko ograničenje – stek u deljenoj memoriji

⚫ Od Fermi arhitekture GPU-ova

 Nije dozvoljeno deklarisanje 
statičkih promenljivih unutar funkcije

 Nisu dozvoljene funkcije 
sa varijabilnim brojem argumenata
⚫ Funkcije poput printf(...)
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CUDA kvalifikatori promenljivih

 Automatske promenljive bez kvalifikatora se smeštaju u registre
⚫ Osim velikih struktura i statičkih nizova koji se smeštaju u lokalnu memoriju

 Pokazivači mogu da pokazuju samo na objekte iz globalne memorije:
⚫ Alocirane na strani domaćina i prosleđene jezgru

__global__ void KernelFunc(float* ptr);

⚫ Statički deklarisane objekte na strani uređaja

float* ptr = &globalVar;

 Kvalifikator __device__ je opcion 
ako su navedeni kvalifikatori __shared__ ili __constant__

Memorija Opseg Životni vek

__device__ __shared__   int SharedVar; deljena blok blok

__device__              int GlobalVar; globalna grid aplikacija

__device__ __constant__ int ConstantVar; konstantna grid aplikacija
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Ugrađeni tipovi

 Izvršna biblioteka obezbeđuje
određene ugrađene tipove podataka
⚫ [u]char[1..4], [u]short[1..4], 

[u]int[1..4], [u]long[1..4], float[1..4]

 To su strukture koje imaju x, y, z, w polja:
uint4 param;

int y = param.y;

 Ugrađeni tip dim3

⚫ Zasnovan na uint3

⚫ Koristi se za zadavanje dimenzija
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Ugrađene promenljive

 dim3 gridDim;

⚫ Dimenzije rešetke u broju blokova (1D, 2D ili 3D) 

⚫ Maskimalne dimenzije 2147483647 x 65535 x 65535 

 dim3 blockDim;

⚫ Dimenzije bloka u broju niti (1D, 2D ili 3D) 

⚫ Maksimalne dimenzije (blok i rešetka)

 Tesla arhitektura 512 niti (512 x 512 x 64)

 Kasnije arhitekture 1024 niti (1024 x 1024 x 64)

 dim3 blockIdx;

⚫ Indeks bloka unutar rešetke

 dim3 threadIdx;

⚫ Indeks niti unutar bloka

 Maksimalne vrednosti pojedinih parametara su hardverski zavisne

⚫ Mogu biti podložne promenama u budućnosti
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Ugrađene matematičke funkcije

 Izvršna biblioteka obezbeđuje 
određeni skup matematičkih funkcija
⚫ pow, sqrt, cbrt, hypot

⚫ exp, exp2, expm1

⚫ log, log2, log10, log1p

⚫ sin, cos, tan, asin, acos, atan, atan2

⚫ sinh, cosh, tanh, asinh, acosh, atanh

⚫ ceil, floor, trunc, round

 Kada se izvršavaju na strani domaćina, 
koriste se implementacije iz standardne C biblioteke
⚫ Podržane samo za skalarne tipove
⚫ Varijante koje imaju slovo f u nastavku imena, poput sinf rade sa 

podacima jednostruke preciznosti (float)

⚫ Postoje i brže, ali manje precizne varijante ovih funkcija, 
koje se mogu izvršavati samo na strani uređaja
 __sin, __cos, __tan
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Prevođenje CUDA programa (1)

 Bilo koji izvorni kod koji sadrži CUDA ekstenzije mora se 
prevesti pomoću nvcc prevodioca

 NVCC je prevodilac-omotač (compiler driver)
⚫ Radi tako što poziva sve nepohodne alate i prevodioce 

 cudacc, g++, cl, ...

 Izlazi NVCC prevodioca su:
⚫ C kod koji se izvršava na strani domaćina (CPU kod) i koji se 

mora dalje prevesti odgovarajućim prevodiocem
⚫ PTX (Parallel Thread eXecution) kod

 Predstavlja neku vrstu međukoda za grafički procesor

 Bilo koji program koji sadrži CUDA pozive, zahteva
sledeće dve dinamičke bilioteke:
⚫ CUDA runtime biblioteku (cudart)
⚫ CUDA core biblioteku (cuda)
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Prevođenje CUDA programa (2)

G80 … GV100

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

Target code

PTX Code

CPU Code
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Prevođenje CUDA programa (3)

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

G80 … GV100

Target code

PTX Code
Virtual

Physical
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NVCC i PTX virtualna mašina

 EDG preprocesor

⚫ Razdvaja GPU 
od CPU koda

 Open64

⚫ Generiše GPU PTX 
asemblerski kod

 PTX kod

⚫ Just-in-time prevođenje

⚫ Omogućava izvršavanje 
na različitim ISA
(Instruction Set 
Architecture)

EDG

C/C++ CUDA

Application

CPU Code

Open64

PTX Code

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;
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Debagovanje CUDA programa

 Provera korektnosti koda kroz 
NVIDIA Compute Sanitizer skup alata
⚫ memcheck

 Detektuje pristupe memoriji van opsega, curenja memorije i sl.

⚫ racecheck
 Detektuje utrkivanja u deljenoj memoriji

⚫ synccheck
 Detektuje nekorektnu sinhronizaciju na nivou bloka

⚫ initcheck
 Detektuje neinicijalizovane pristupe globalnoj memoriji

 Interaktivno debagovanje kroz cuda-gdb
⚫ Pod Linux OS-om
⚫ Nsight Visual Studio Code Edition

 Intergracija sa VS Code, omogućava remote debugging
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Profaliranje CUDA programa

 Paket Nsight
⚫ Nsight Systems

 Početna tačka za analizu performansi
 Vremenska linija za CPU i GPU na nivou sistema
 Detektuje velika uska grla kao što su spori memorijski transferi,

periode kada GPU ne radi, probleme u multi-GPU komunikaciji i sl. 

⚫ Nsight Compute
 Informacije na nivou pojedinačnih jezgara
 Analiza da li je jezgro compute-bound ili memory-bound

 Moguće profajliranje na udaljenom računaru
⚫ Prikupljanje informacija command line alatima
⚫ Analiza kroz GUI na lokalnom računaru

 Assess, Parallelize, Optimize, Deploy 
(APOD) ciklus
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Višedimenzionalne rešetke (1)

 Jezgro se može izvršavati i 
u okviru višedimenzionalne rešetke
⚫ Olakšava pristup memoriji 

pri obradi višedimenzionalnih struktura
⚫ Matrice, slike i sl.

 Proizvoljna organizacija
na nivou bloka i rešetke
⚫ 1D, 2D i 3D

 Tehnika podele problema
na pločice (tiles)
⚫ Tiling tehnika
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Višedimenzionalne rešetke (2)

 Primer obrade slike korišćenjem 2D rešetke
⚫ Jedna nit obrađuje jedan piksel slike (matrice)
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Višedimenzionalne rešetke (3)

 Adresiranje pojedinačnog elemenata matrice
⚫ Smeštanje elemenata matrice po vrstama

 Tipično za C/C++
⚫ Jedna nit obrađuje jedan element matrice
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Studija slučaja – množenje matrica (1)

 Potrebno je 
pomnožiti dve matrice
⚫ Zbog jednostavnosti 

pretpostavimo kvadratne

 Jedna nit će biti zadužena za 
računanje jednog
elementa
⚫ Svaka nit će 

pristupati WIDTH 
puta elementima 
matrica M i N

61

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
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Studija slučaja – množenje matrica (2)

 Tradicionalni sekvencijalni kod:

void MatrixMulOnHost
(float* M, float* N, float* P, int Width) {   

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

float sum = 0;

for (int k = 0; k < Width; ++k) {

float a = M[i * width + k];

float b = N[k * width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}
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M

Smeštanje matrica u C-u 

 Matrice se u C-u smeštaju po vrstama
⚫ Matrica će uređaju biti preneta linearizovana

⚫ Svaka nit će proračunati adresu elementa 
kome treba da pristupi
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Studija slučaja – množenje matrica (3)

 CUDA program na strani domaćina:

void MatrixMulOnDevice (float* M, float* N, float* P, int Width) {

int size = Width * Width * sizeof(float); 

float *Md, *Nd, *Pd;

1. // Allocate and Load M, N to device memory 

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

2. //Kernel invocation code – to be shown later

3. // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}
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Studija slučaja – množenje matrica (4)

 Jezgro:
__global__ void MatrixMulKernel

(float* Md, float* Nd, float* Pd, int Width) {    

// Pvalue is used to store the element of the matrix

// that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k) {

float Melement = Md[threadIdx.y * Width + k];

float Nelement = Nd[k * Width + threadIdx.x];

Pvalue += Melement * Nelement;

}

Pd[threadIdx.y * Width + threadIdx.x] = Pvalue;

}
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Studija slučaja – množenje matrica (5)

 Jezgro pokreće sledeći kod:
// Setup the execution configuration

dim3 dimGrid(1, 1);

dim3 dimBlock(Width, Width);

// Launch the device computation 
threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>
(Md, Nd, Pd, Width);
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Nedostaci predloženog rešenja (1)

 Koristi se samo jedan blok niti

⚫ Matrice mogu biti samo ograničene veličine

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

(2, 2)

WIDTH

Md Pd

Nd
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Nedostaci predloženog rešenja (2)

 Jedan blok niti računa matricu Pd

 Svaka nit računa jedan element Pd i pritom:
⚫ Učitava vrstu matrice Md

⚫ Učitava kolonu matrice Nd

⚫ Izvršava jedno množenje i sabiranje 
za svaki par elementa iz matrica Md i Nd

⚫ Odnos između računanja i 
pristupa (sporoj) globalnoj memoriji je mali (oko 1:1)

 2 operacije

 2 pristupa globalnoj memoriji

 Veličina matrice ograničena brojem niti 
dozvoljenom unutar jednog bloka niti
⚫ Ogranično arhitekturom (1024 niti)
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Studija slučaja –
množenje matrica (6)

 Rešenje – podeliti matricu 
na podmatrice (tiles) 
koje će obraditi zasebni blokovi niti
⚫ Svaka nit računa jedan element

⚫ Veličina bloka niti će biti 
jednaka veličini podmatrice
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Studija slučaja – množenje matrica (7)

 Primer množenja matrice 4x4, 
korišćenjem blokova niti dimenzija 2x2 niti

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2 Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3
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Studija slučaja – množenje matrica (8)

 Jezgro:
__global__ void MatrixMulKernel

(float* Md, float* Nd, float* Pd, int Width) {

// Calculate the row index of the Pd element and M

int Row = blockIdx.y * TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x * TILE_WIDTH + threadIdx.x;

if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

// Each thread computes one element of the block 
submatrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];

Pd[Row * Width + Col] = Pvalue;

}

}
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 Grafički procesor se može posmatrati 
kao skup multiprocesora

 Svaki multiprocesor je skup 32-bitnih 
skalarnih procesora SIMD arhitekture

 U svakom taktu, svaki procesor unutar 
multiprocesora izvršava istu instrukciju

⚫ Uključujući skokove (grananja)

 Ovakav način izvršavanja je skalabilan

⚫ Dodavanjem novih multiprocesora 
popravljaju se performanse

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction

Unit

Processor 1

…

Processor 2

Processor M

Hardverska implementacija (1)

…
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Hardverska implementacija (2)

 Niti se izvršavaju 
na skalarnim procesorima

 Blokovi niti se izvršavaju na 
pojedinačnim multiprocesorima
⚫ Blokovi ne mogu da migriraju

 Nekoliko blokova niti može 
da se izvršava na 
jednom multiprocesoru
⚫ U zavisnosti 

od potreba za resursima

 Registrima

 Deljenom memorijom
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Hardverska implementacija (3)

 Primer arhitekture (stariji GT200 grafički procesor, compute capability 1.3)
⚫ 240 skalarni procesora (SP) izvršava niti jezgra
⚫ 30 streaming multiprocesora (SM) sadrži:

 8 skalarnih procesora
 16KB deljene memorije za saradnju na nivou bloka
 1 jedinicu za rad u pokretnom zarezu dvostruke preciznosti
 2 jedinice specijalne namene (SFU)
 64KB registarski fajl

ETF Beograd::Multiprocesorski sistemi::GPU računarstvo 74/146



Hardverska implementacija (4)

 Primer arhitekture 
(noviji GP106-400-A1 GPU, 
compute capability 7.0)

⚫ 2 GPC 
(Graphics Processing Clusters)

⚫ 1280 CUDA jezgara 
(skalarnih procesora) 
10 streaming multiprocesora 
(SM) sadrži:

 128 skalarnih procesora

 96KB deljenje memorije 
za saradnju na nivou bloka

 6 32-bitnih 
memorijskih kontrolera

 256KB registarski fajl

 1536KB L2 cache
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Izvršavanje blokova niti (1)

 Hardver raspoređuje blokove niti procesorima slobodno, 
bez ikakvih ograničenja
⚫ Jezgra su skalabilna nezavisno od broja paralelnih procesora 

na kojima se izvršavaju
⚫ Svaki blok se može izvršiti u bilo kome relativnom poretku

u odnosu na druge blokove

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7vreme

ETF Beograd::Multiprocesorski sistemi::GPU računarstvo 76/146



Izvršavanje blokova niti (2)

 Niti se multiprocesorima dodeljuju na nivou bloka
⚫ Najviše 8-32 blokova, zavisno od arhitekture, 

ukoliko drugi resursi dozvoljavaju
⚫ Npr. na Volta arhitekturi sa compute capability 7.0, 

najviše 2048 niti se može izvršavati na jednom multiprocesoru
 Primer: 2 bloka po 1024 niti ili 4 bloka po 512 niti

⚫ Multiprocesor je zadužen za upravljanje i 
raspoređivanje niti za izvršavanje

⚫ Multiprocesor održava blockIdx i threadIdx za svaku nit

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0
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Raspoređivanje i izvršavanje niti (1)

 Niti iz bloka se na SM-u 
izvršavaju u jedinicama 
koje se nazivaju warp-ovi
⚫ SIMD izvršavanje

⚫ 1 warp = 32 niti

⚫ Warp je jedinica 
za raspoređivanje na SM-u

⚫ Implementaciona odluka

 Ako se na SM-u izvršava 
2 bloka od po 1024 niti:
⚫ Svaki blok se deli na 

1024 / 32 = 32 warp-a

⚫ Na SM-u ukupno 32 * 2 = 64 
warp-a za izvršavanje

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…Block N Warps
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Raspoređivanje i izvršavanje niti (2)

 Blokovi niti se u warp-ove dele na sledeći način:
⚫ Niti u okviru bloka se linearizuju po vrstama

⚫ Indeksi niti unutar bloka su rastući i uzastopni

⚫ Warp-ovi se formiraju počevši od niti sa indeksom 0

⚫ Podela se uvek radi na isti način
 To znanje se može iskoristiti kod kontrole toka

 Redosled izvršavanja warp-ova 
ne mora biti jednoznačan
⚫ Ukoliko postoje zavisnosti među nitima 

unutar jednog bloka, mora se vršiti sinhronizacija 

⚫ Ugrađena funkcija __syncthreads() se koristi 
za sinhronizaciju niti na nivou bloka
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Raspoređivanje i izvršavanje niti (3)

 Na SM-ovima je implementirana 
zero-overhead politika 
raspoređivanja warp-ova
⚫ Broj warp-ova koji se izvršava na SM-u 

u jednom trenutku zavisi direktno 
od arhitekture SM-a

⚫ Raspoloživi za izvršavanje su 
samo oni warp-ovi kod kojih su 
svi operandi dostupni za isvršavanje 
u narednoj instrukciji

⚫ Warp-ovi se biraju za izvršavanje 
na osnovu prioriteta
 Round robin + aging

⚫ Sve niti unutar warp-a izvršavaju 
istu instrukciju kada su izabrane

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96
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Raspoređivanje i izvršavanje niti (4)

 Prosečno vreme pristupa globalnoj memoriji je 
oko 200 ciklusa procesora

 Na novijim arhitekturama, 2 ciklusa su u proseku 
potrebna da bi se instrukcija izvršila u warp-u
⚫ Ako, u proseku, svaka četvrta instrukcija zahteva 

pristup memoriji: 

 Potrebno je najmanje 26 warp-ova na jednom SM-u 
da bi se u potpunosti tolerisalo kašnjenje 

 2 * 4 * 26 = 208

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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Kontrola toka (1)

 SM-ovi su procesori SIMD arhitekture
⚫ Dohvatanje i dekodovanje instrukcije se vrši 

zajednički za više procesnih jedinica
⚫ Sve niti moraju izvršavati isti kod u okviru warp-a

 Ovo se efikasno izvršava ukoliko sve niti 
u okviru warp-a slede istu putanju izvršavanja
⚫ Sva if-else uslovna grananja donose istu odluku
⚫ Sve petlje se izvršavaju isti broj iteracija

 Problem prilikom izvršavanja mogu biti warp-ovi 
kod kojih postoji divergencija u kontroli toka
⚫ Branch (control) divergence problem
⚫ Deo niti unutar warp-a izvršava jednu putanju koda, 

a deo niti izvršava drugu putanju (kod if-else)
⚫ Niti izvršavaju različit broj iteracija petlji
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Kontrola toka (2)

 Grananja se izvršavaju tako što sve niti izvrše 
sve moguće putanje 
⚫ Izvršavanje niti se serijalizuje

⚫ Izvršavaju se sve moguće putanje jedna po jedna

⚫ Alternativno, vrši se predikatsko (spekulativno) izvršavanje

 Instrukcije pod predikatom mora da ubaci prevodilac 

 Zatim se u zavisnosti od uslova grananja, 
odbacuju/ne upisuju rezultati putanja koje nisu aktivne

 Ovakav način izvršavanja može dovesti 
do značajnih usporenja!
⚫ Broj putanja može biti veliki u zavisnosti 

od ugneždavanja kontrolnih struktura
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Kontrola toka (3)

 Divergencija u kontroli toka nastaje kada je uslov 
grananja ili petlje zavisan od indeksa niti u okviru bloka

 Primer jezgra sa divergencijom kontrole toka:
⚫ if (threadIdx.x > 10) { }

⚫ U ovom slučaju postoje dve putanje izvršavanja niti 
unutar bloka

⚫ Prvih 10 niti izvršava jednu putanju, ostale niti drugu

⚫ Problem na nivou prvog warp-a u bloku

 Primer bez divergencije kontrole toka:
⚫ if (blockIdx.x > 2) { }

⚫ Odluka se donosi na nivou bloka

⚫ Svi warp-ovi u bloku izvršavaju iste putanje
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Kontrola toka (4)

 Primer sabiranja dva vektora od 10000 elemenata
⚫ Pokreće se 10 blokova sa po 1024 niti
⚫ Ukupno 10240 niti, suvišne niti ne izvršavaju obradu

 Niti u blokovima 0-8 neće imati divergentne putanje
⚫ 288 warp-ova će se izvršavati na isti način

 U bloku 9 će biti divergentnih putanja:
⚫ Prva 24 warp-a u bloku će se izvršavati na isti način 

kao u prethodnim blokovima
⚫ Warp 25 u bloku će divergirati

 Pola niti će izvršavati obradu, druga polovina neće

⚫ Warp-ovi nakon toga će sadržati niti koje ne izvršavaju obradu

 Minimalan efekat na performanse izvršavanja
⚫ Smanjuje je sa povećanjem veličine niza
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Granularnost blokova (1)

 Dimenzije blokova niti treba pažljivo odabrati
 Primer množenja matrica 

Na arhitekturi sa compute capability 7.0 (Volta) 
sa 2048 niti po SM-u 

 Da li treba koristiti 8x8, 16x16 ili 32x32 blokove?
 Za blok dimenzija 8x8, izvršava se 64 niti po bloku

⚫ Maksimalno 2048 niti / 64 niti po bloku = 32 bloka niti
⚫ Svaki SM može da prihvati 32 blokova na izvršenje
⚫ Potpuna okupiranost

 Za blok dimenzija 16x16, 
izvršava se 256 niti po bloku
⚫ Maksimalno 2048 niti / 256 niti po bloku = 8 blokova niti

 Za blok dimenzija 32x32, 
ukupno bi se izvršavalo 1024 niti po bloku
⚫ Maksimalno 2048 niti / 1024 niti po bloku = 2 bloka niti
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Granularnost blokova (2)

 Odluka o granularnosti blokova 
dosta zavisi od arhitekture grafičkog procesora
⚫ U sva tri slučaja iskorišćava se pun kapacitet 

pojedinačnog multiprocesora
 Osim ako potreba za drugim resursima ne onemogući 

izvršavanje ovakve konfiguracije

⚫ Nameće korišćenje profajlera i sličnih alatki

 Occupancy metrika
⚫ Odnos broja aktivnih warp-ova i 

maksimalnog mogućeg broja warp-ova koji mogu 
teoretski da se izvršavaju na jednom SM-u simultano

 Na starijim generacijama ne mora biti ovako!
⚫ Proveriti parametre u okviru dokumentacije
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Granularnost blokova (3)

 Primer starije, Fermi arhitekture (cc 2.0) 
⚫ 1536 niti po SM-u, blok do 1024 niti, najviše 8 blokova po SM-u

 Za blok dimenzija 8x8, izvršava se 64 niti po bloku
⚫ Maksimalno 1536 niti / 64 niti po bloku = 36 blokova niti
⚫ Svaki SM može da prihvati samo 8 blokova na izvršenje

 Samo 512 niti će se izvršavati na svakom SM-u!

 Za blok dimenzija 16x16, izvršava se 256 niti po bloku
⚫ Maksimalno 1536 niti / 256 niti po bloku = 6 blokova niti
⚫ Iskorišćava se pun kapacitet pojedinačnog multiprocesora

 Osim ako potreba za drugim resursima 
ne onemogući izvršavanje ovakve konfiguracije

 Za blok dimenzija 32x32, izvršava se 1024 niti po bloku
⚫ Maksimalno 1536 niti / 1024 niti po bloku = 1 blok niti

 Samo jedan blok se izvršava na SM-u
⚫ Redukcija paralelizma od 1/3!
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Hardverski pogled na CUDA memorije

 Hijerarhija memorijskih prostora

⚫ Registarski fajl, deljena memorija, globalna memorija 
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Alokacija registara (1)

 Svaki multiprocesor poseduje registarski fajl 
⚫ Registri se dinamički dodeljuju blokovima 

koji se izvršavaju na pojedinačnom multiprocesoru
 Veličina registarskog fajla zavisi od arhitekture

 8-64K 32-bitnih registara na svakom SM-u

⚫ Niti iz drugih blokova ne mogu pristupati 
registrima dodeljenim jednom bloku niti
 Svaka niti pristupa samo registrima koji su joj dodeljeni

 Najviše 255 regisatara po niti

 Broj blokova koji se izvršava na jednom SM-u 
direktno zavisi od njihovih potreba za registrima
⚫ Što može dovesti do slabog iskorišćenja resursa
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Alokacija registara (2)

 Pretpostavimo sledeći scenario:
⚫ Na raspolaganju je 8K registarski fajl 

 Na primer, na staroj G80 arhitekturi (cc 1.1)

⚫ Jezgro se izvršava u blokovima veličine 16x16

⚫ Svaka nit koristi 10 registara

 Za izvršavanje svakog bloka je potrebno 
256 * 10 = 2560 registara
⚫ 2560 * 3 = 7680 < 8192

⚫ Na SM-u se može izvršavati 3 bloka niti, 
što se tiče alokacije registara
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Alokacija registara (3)

 Ukoliko se broj registara po svakoj niti poveća 
samo za jedan:
⚫ Za izvršavanje svakog bloka će biti potrebno 

256 * 11 = 2816 registara
 2816 * 3 = 8448 > 8192

⚫ Samo dva bloka će moći da se izvrše na SM-u
 2816 * 2 = 5632 << 8192
Redukcija paralelizma skoro 1/3!

 Nije kritično na novijim arhitekturama
⚫ Međutim, prevodilac svojim (ne)optimizacijama može 

da napravi problem
⚫ Kvalifikator __launch_bounds__ se može iskoristiti 

da ograniči broj registara po niti

ETF Beograd::Multiprocesorski sistemi::GPU računarstvo 92/146



Paralelna memorijska arhitektura (1)

 Memorijski propusni opseg (bandwidth) predstavlja 
jedno od najvažnijih uskih grla 
modernih višejezgarnih i mnogojezgarnih procesora
⚫ Kod paralelne mašine, veliki broj niti pristupa memoriji
⚫ Zahteva se velika količina podataka za obradu

 Zahteva specifičnu organizaciju DRAM podsistema

⚫ Pristup u transakciji (DRAM burst), memorijske banke i kanali

 Značajan uticaj na performanse
⚫ Veoma izražen problem kod grafičkih procesora
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Paralelna memorijska arhitektura (2)

 Memorija je preklopljena i podeljena 
u memorijske banke na grafičkom procesoru
⚫ Memory interleaving tehnika

⚫ Globalna i deljena memorija

⚫ Vrlo bitno za postizanje velikog propusnog opsega

 Svaka memorijska banka može 
da usluži jedan zahtev u jednom ciklusu
⚫ Celokupna memorija može simultano da usluži 

onoliko pristupa koliko ima memorijskih banki

 Više simultanih pristupa istoj banki 
dovodi do konflikta
⚫ Konfliktni pristupi se serijalizuju

Bank 31

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Paralelna memorijska arhitektura (3)

 Memorija je podeljena u 32 banke

⚫ Uzastopne 32-bitne reči se dodeljuju 
uzastopnim memorijskim bankama

 Pristup memoriji na CUDA se 
kombinuje u transakcije

⚫ Najbolje performanse se dobijaju kada 
sve niti unutar warp-a pristupaju 
uzastopnim memorijskim lokacijama

 Tada nema konflikata

⚫ Konflikti su mogući 
jedino unutar warp-a

32

Global 
Memory

Warp

32

Shared 
Memory

Warp
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Primeri pristupa memoriji (1)

 Nema konflikata

⚫ Linearno adresiranje

⚫ stride = 1

 Nema konflikata

⚫ Slučajan pristup memoriji

Bank 31

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 31

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 31

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 31

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0
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Primeri pristupa memoriji (2)

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 31

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 31

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

 8-struki konflikt
⚫ Linearno adresiranje

⚫ stride = 8

 Dvostruki konflikt
⚫ Linearno adresiranje

⚫ stride = 2
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Pristup memoriji u transakcijama (1)

 Najbolje performanse se dobijaju 
kada sve niti unutar warp-a
pristupaju uzastopnim memorijskim lokacijama

⚫ Spojeni/sjedinjeni pristup memoriji (memory coalescing)

⚫ Posledica pristupa podacima u burst-u (transakciji)

 Ceo adresni prostor je podeljen u burst sekcije

⚫ Kada god se pristupi lokaciji, sve ostale lokacije 
u okviru iste sekcije se takođe dostavljaju

⚫ U praksi, adresni prostor je reda veličine 4GB, 
a burst sekcije su veličine 128 bajtova ili više
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Pristup memoriji u transakcijama (2)

 Pristup u jednoj transakciji se dešava kada:

⚫ Sve niti u okviru warp-a izvršavaju load instrukciju

⚫ Ukoliko pristupi svim lokacijama upadaju 
u okviru iste burst sekcije

⚫ Tada će biti generisan samo jedan zahtev DRAM memoriji

⚫ Pristup će biti potpuno sjedinjen (fully coalesced)

 U suprotnom, biće generisano više transakcija
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Pristup memoriji u transakcijama (3)

 Pristup u više transakciji se dešava kada:

⚫ Niti u okviru warp-a izvršavaju load instrukciju

⚫ Pristupi lokacijama se protežu preko granica burst sekcija

⚫ Biće generisano više zahteva DRAM memoriji

⚫ Pristup nije sjedinjen (non-coalesced)

 Neki bajtovi kojima je pristupljeno će biti odbačeni

⚫ Neće biti korišćeni od strane niti
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Pristup memoriji u transakcijama (4)

 Moguća okvirna provera 
da li je pristup sjedinjen u okviru warp-a

 Adresni izraz za pristup nizu A treba 

da bude oblika:
⚫ A[expr + threadIdx.x]

⚫ Gde je expr izraz sa članovima 
koji su nezavisni od threadIdx.x

 Tada niti pristupaju sukcesivnim lokacijama

⚫ Pristup će biti potpuno sjedinjen ukoliko niti pristupaju 
lokacijama iz istog DRAM burst-a
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Pristup memoriji u transakcijama –
množenje matrica (1)

Md Nd

W
ID

T
H

WIDTH

Nit 1
Nit 2

Nema spajanja

(non-coalesced)

Ima spajanja

(coalesced)

 Primer množenja matrica prikazuje oba načina pristupa
⚫ Pristup vrstama matrice M od strane niti iz iste vrste

 Niti pristupaju istom elementu u jednom trenutku

⚫ Pristup kolonama matrice N od strane niti iz iste vrste
 Niti pristupaju susednim elementima u jednom trenutku
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M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Smeštanje matrica u memoriju 
(podsetnik)

 Matrice se na programskom jeziku C 
podrazumevano smeštaju po vrstama

⚫ Matrica se na uređaju smešta linearizovana
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Pristup memoriji u transakcijama –
množenje matrica (2)

 Pristup vrstama matrice Md

 Ne postoji kombinovanje u transakciju:
⚫ Niti ne pristupaju 

uzastopnim lokacijama u jednom trenutku

 Non-coalesced access

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Trenutak 1

T1 T2 T3 T4

Trenutak 2 …

Niti:
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Pristup memoriji u transakcijama –
množenje matrica (3)

 Pristup kolonama matrice Nd

 Postoji kombinovanje u transakciju:
⚫ Niti pristupaju 

uzastopnim lokacijama u svakom trenutku

 Coalesced access

N2,0

N1,1

N1,0N0,0

N0,1

N3,0

N2,1 N3,1

N1,2N0,2 N2,2 N3,2

N1,3N0,3 N2,3 N3,3Smer pristupa 
u kodu jezgra

N2,0N1,0N0,0 N3,0 N1,1N0,1 N2,1 N3,1 N1,2N0,2 N2,2 N3,2 N1,3N0,3 N2,3 N3,3

N

T1 T2 T3 T4

Trenutak 1

T1 T2 T3 T4

Trenutak 2
…

Niti:
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Konstantna memorija

 Region konstantne memorije se nalazi 
u DRAM-u (64KB veličine)
⚫ Međutim, pristup konstantnoj memoriji je 

keširan radi bržeg pristupa

⚫ Svaki SM ima svoj L1 keš

 Pojedinačna vrednost 
iz konstantne memorije može biti 
objavljena svim nitima unutar warp-a
⚫ Broadcast mehanizam

⚫ Efikasan način za pristup vrednosti koja je 
zajednička za sve niti unutar bloka

 Pogodno koristiti kada god pristup 
podacima podrazumeva samo čitanje

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU
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 Za efikasno deljenje podataka na nivou bloka niti 
može se koristiti deljena memorija

⚫ Omogućava veliku uštedu memorijskog propusnog opsega

⚫ Nalazi se na čipu svakog SM-a (on-chip memory)

 Kombinovani L1 keš i deljena memorija

 Efikasan pristup, 3-4 ciklusa procesora

DRAM

ALU

Shared

memory

Control

Cache
ALU ALU ...

d0 d1 d2 d3

d0 d1 d2 d3

ALU

Shared

memory

Control

Cache
ALU ALU ...

d4 d5 d6 d7

d4 d5 d6 d7

…

…
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Deljena memorija (2)

 Deljena memorija se može smatrati 
kao neka vrsta keša 
upravljanog od strane korisnika

⚫ User managed cache/scratchpad

 Svaki SM ima ograničenu veličinu 
deljene memorije

⚫ Kapacitet zavisan od arhitekture GPU

⚫ Starije arhitekture 16-48KB

⚫ Novije arhitekture 64-228KB

 Deljena memorija je podeljena u 
32 banke sastavljenih od 32-bitnih reči

⚫ Niti iz istog bloka mogu slobodno da čitaju i pišu

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU
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Deljena memorija (3)

 Pristup deljenoj memoriji će biti brz skoro 
kao pristup registrima, ukoliko nema konflikata 
prilikom pristupa memorijskim bankama

 Brz pristup deljenoj memoriji:
⚫ Ako sve niti iz warp-a pristupaju različitim memorijskim bankama, 

nema konflikta

⚫ Ako sve niti iz warp-a pristupaju istoj adresi, nema konflikta

 Koristi se broadcast mehanizam

 Spor pristup deljenoj memoriji:
⚫ Konlikt prilikom pristupa se dešava kada više niti iz warp-a 

pristupaju istoj memorijskoj banci

 Ne nužno i istoj lokaciji

⚫ Pristupi se tada serijalizuju
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Deljena memorija (4)

 Deljena memorija se unutar jezgra zadaje ključnom rečju 
__shared__

 Može se zadati eksplicitno (statički)
__shared__ float DynamicSharedMem[BLOCK_SIZE];

 Može se specificirati prilikom poziva jezgra 
unutar izvršne konfiguracije
⚫ Takva memorija se alocira u promenljive deklarisane kao

extern __shared__ float DynamicSharedMem[];

⚫ Primer pozivanja takvog jezgra:
__global__ void KernelFunc(...);

...

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
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Tipična strategija programiranja (1)

 Globalna memorija se nalazi u memoriji uređaja 
(DRAM)

⚫ Mnogo sporiji pristup nego kod deljene memorije

 Deljena memorija se upotrebljava 
kako bi se smanjili efekti 
memorijskog propusnog opsega na performanse

 Uobičajena strategija za sprovođenje izračunavanja 
podrazumeva podelu podataka na podblokove (tiles) 
⚫ Fokus rada niti se prebacuje na manje podblokove podataka 

u jednom trenutku vremena
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Tipična strategija programiranja (2)

 Tiling tehnika koristi se prednost 
brze deljene memorije
⚫ Podaci se dele na podblokove koji mogu 

da stanu u deljenu memoriju

⚫ Izvršavanje se deli na faze

 Svaki podblok se obrađuje jednim blokom niti
⚫ Podblok se učitava iz globalne u deljenu memoriju 

od strane niti iz bloka

 Kako bi se omogućilo čitanje u transakciji

⚫ Vrši se obrada podbloka u deljenoj memoriji

⚫ Svaka nit može efikasno da pristupi svakom podatku iz podbloka

⚫ Rezultati se kopiraju nazad iz deljene memorije u globalnu

⚫ Prelazi se na obradu narednog podbloka
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Tipična strategija programiranja (3)

 Bitno je uskladiti rad niti po fazama

⚫ Može zahtevati korišćenje sinhornizacije na barijeri

⚫ Koristi se API funkcija __syncthreads()
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Sinhronizacija na barijeri

 Sinhronizacija na barijeri je moguća samo na nivou bloka niti

⚫ Može biti pozvana samo unutar jezgra

 Jednom kada sve niti dostignu sinhronizacionu tačku, 
izvršavanje se nastavlja normalno

 Poziv treba koristiti da bi se izbegli 
RAW / WAR / WAW hazardi pristupa deljenoj ili globalnoj memoriji

 Koristi se često u tiled algoritmima:

⚫ Obezbeđuje da svi elementi podbloka budu učitani

⚫ Obezbeđuje da svi elementi podbloka budu konzumirani 
pre naredne faze algoritma

 Mora se pažljivo koristiti unutar uslovnih grananja

⚫ Sve niti unutar bloka moraju izvršavati istu granu
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Množenje matrica – podsetnik (1)

 Jezgro:
__global__ void MatrixMulKernel

(float* Md, float* Nd, float* Pd, int Width) {

// Calculate the row index of the Pd element and M

int Row = blockIdx.y * TILE_WIDTH + threadIdx.y;

// Calculate the column index of Pd and N

int Col = blockIdx.x * TILE_WIDTH + threadIdx.x;

float Pvalue = 0;

// Each thread computes one element of the block submatrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];

Pd[Row * Width + Col] = Pvalue;

}
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Množenje matrica – podsetnik (2)

 Svaka nit iz iste vrste će pristupati WIDTH puta 
elementima matrica M i N

⚫ Postoje suvišni, redundantni pristupi elementima, 
kako na nivou vrste matrice M, tako i na nivou kolone matrice N
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Množenje matrica – deljena memorija (1)

 Ideja je da se matrice podele na podblokove

⚫ Niti će učitavati jedan po jedan podblok i obrađivati ih
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Množenje matrica – deljena memorija (2)

 Svaki ulazni element će biti učitan 
WIDTH puta
⚫ Svaka nit će pristupati WIDTH puta 

elementima matrica M i N

 Ideja je da se svaki element učita 
u deljenu memoriju
⚫ Više niti će koristiti lokalnu verziju podatka 

da uštede propusni opseg memorije

118

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx
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Množenje matrica –
deljena memorija (3)

 Izvršavanje jezgra 
se deli na faze

⚫ Pristup podacima u jednoj fazi se 
odvija na nivou jednog podbloka 
matrica Md i Nd

W
ID

T
H
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Množenje matrica – deljena memorija (4)

 Primer izračunavanja jednog podbloka 
rezultujuće matrice

⚫ Matrica dimenzija 4x4

⚫ Podblokovi dimenzija 2x2

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3
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Množenje matrica – deljena memorija (5)

 Svaki element matrica Md i Nd se koristi tačno dva puta 
prilikom izračunavanja podbloka matrice Pd

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Redosled 

pristupa
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Množenje matrica – deljena memorija (6)

 Izračunavanje matrice se deli na faze

⚫ Najpre se podblokovi matrica Md i Nd 
učitaju u deljenu memoriju

⚫ Zatim se izračuna deo podbloka 
matrice Pd

⚫ Svaka faza koristi 
jedan deo

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3
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Množenje matrica – deljena memorija (7)

Faza 1 Faza 2

T0,0 Md0,0

↓ 
Mds0,0

Nd0,0

↓ 

Nds0,0

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

Md2,0

↓ 

Mds0,0

Nd0,2

↓ 

Nds0,0

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

T1,0 Md1,0

↓ 
Mds1,0

Nd1,0

↓ 

Nds1,0

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

Md3,0

↓ 

Mds1,0

Nd1,2

↓ 

Nds1,0

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

T0,1 Md0,1

↓ 
Mds0,1

Nd0,1

↓ 

Nds0,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

Md2,1

↓ 

Mds0,1

Nd0,3

↓ 

Nds0,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

T1,1 Md1,1

↓ 
Mds1,1

Nd1,1

↓ 

Nds1,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1

Md3,1

↓ 

Mds1,1

Nd1,3

↓ 

Nds1,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1
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Množenje matrica – deljena memorija (8)

 Kompletan kod:

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width  / TILE_WIDTH, Width /  TILE_WIDTH);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>> (Md, Nd, Pd, Width);
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Množenje matrica – deljena memorija (9)

__global__ void MatrixMulKernel

(float* Md, float* Nd, float* Pd, int Width) {

__shared__float Mds[TILE_WIDTH][TILE_WIDTH];

__shared__float Nds[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

//Identify the row and column of the 

//Pd element to work on

int Row = by * TILE_WIDTH + ty;

int Col = bx * TILE_WIDTH + tx;

float Pvalue = 0;
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Množenje matrica – deljena memorija 
(10)

// Loop over the Md and Nd tiles required to compute

//the Pd element

for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles

// into shared memory

Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];

__syncthreads();

for (int k = 0; k < TILE_WIDTH; ++k)

Pvalue += Mds[ty][k] * Nds[k][tx];

__syncthreads();

}

Pd[Row*Width+Col] = Pvalue;

}
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Množenje matrica –
deljena memorija (11)

 Svaki blok niti računa jednu 
kvadratnu podmatricu Pdsub

veličine TILE_WIDTH

 Svaka nit računa jedan element 
podmatrice Pdsub
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Množenje matrica – performanse (1)

 Svaki blok niti treba da ima veliki broj niti
⚫ Za TILE_WIDTH = 16, biće 16 x 16 = 256 niti po bloku

⚫ Za TILE_WIDTH = 32, biće 32 x 32 = 1024 niti po bloku

 Za veličinu bloka TILE_WIDTH = 16
⚫ Svaki blok niti radi 

2 x 256 = 512 pristupa (čitanja) iz globalne memorije

⚫ Zatim se vrši 256 x (2 x 16) = 8192 operacija 

 Za veličinu bloka TILE_WIDTH = 32
⚫ Svaki blok niti radi 

2 x 1024 = 2048 pristupa (čitanja) iz globalne memorije

⚫ Zatim se vrši 1024 x (2 x 32) = 65536 operacija 
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Množenje matrica – performanse (2)

 Korišćenjem deljene memorije, 
memorijski propusni opseg više nije limitirajući faktor

⚫ Broja računskih operacija mnogo veći od broja pristupa memoriji

⚫ 8192 >> 512 TILE_WIDTH = 16

⚫ 65536 >> 2048 TILE_WIDTH = 32

 Kapacitet deljene memorije može biti ograničavajući 
faktor kod tiled algoritama

⚫ Za TILE_WIDTH = 16, svaki blok niti koristi 2 x 256 x 4B = 2KB
deljene memorije

⚫ Za TILE_WIDTH = 32, svaki blok niti koristi 2 x 1024 x 4B = 8KB
deljene memorije

⚫ Može ograničiti broj blokova koji se izvršavaju na SM-u

ETF Beograd::Multiprocesorski sistemi::GPU računarstvo 129/146



Množenje matrica – performanse (3)
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Atomične operacije (1)

 Postoje situacije kod kojih je potrebno obezbediti atomičnost 
operacija nad globalnom memorijom

⚫ Kako bi se izbegli hazardi podataka (data race)

⚫ Npr. inkrementiranje globalnog brojača

 Atomične operacije omogućavaju izvršavanje 

read-modify-write operacije nad memorijskom lokacijom
⚫ Podržano od strane hardverskih instrukcija

 Hardverski se obezbeđuje da nijedna druga nit ne može 
da pristupi lokaciji dok se trenutna operacija ne završi

⚫ Druge niti koje pokušavaju atomičnu operaciju će biti blokirane 
u redu za čekanje

⚫ Atomične operacije se izvršavaju serijalizovano nad istom lokacijom
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Atomične operacije (2)

 Atomične operacije se izvršavaju pozivanjem 
ugrađenih (intrinzičkih) funkcija (intrinsics) 
u okviru jezgra

⚫ Atomično sabiranje, oduzimanje 

⚫ Inkrementiranje, dekrementiranje

⚫ Minimum, maksimum

⚫ Razmena vrednosti lokacija (exchange), 
CAS (compare and swap)

 Mogu se iskoristiti za ograničenu 
globalnu sinhronizaciju i zaštitu deljenih objekata

 Zavisno od arhitekture grafičkog procesora

⚫ Compute capability definiše dostupne operacije
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Atomične operacije (3)

 Familija atomic add intrinsičkih funkcija
int atomicAdd(int* address, int val); 

⚫ Čita 32-bitnu reč sa stare lokacije address
u globalnoj ili deljenoj memoriji

⚫ Računa old + val

⚫ Smešta rezultat u memoriju na istu adresu
⚫ Funkcija vraća staru vrednost old

 Druge funkciji u familiji:
⚫ Unsigned 32-bit integer atomic add

unsigned int atomicAdd(unsigned int* 
address,unsigned int val); 

⚫ Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long 
long int* address, unsigned long long int val);

⚫ Single-precision floating-point atomic add
float atomicAdd(float* address, float val); 
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 CUDA izvršni (runtime) API pruža razne mogućnosti 
za upravljanje uređajem i izvršavanjem programa

 Postoje funkcije za:
⚫ Upravljanje uređajem

 Sa podrškom za više grafičkih procesora na jednom sistemu
(Multi-GPU)

⚫ Upravljanje memorijom

⚫ Upravljanje teksturama

⚫ Saradnju sa eksternim (grafičkim) API-jima

⚫ Upravljanje greškama

⚫ Upravljanje događajima

 CUDA sistem se automatski inicijalizuje 
kada se prvi put pozove neka funkcionalnost
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 Upravljanje uređajem je omogućeno putem 
odgovarajućih funkcija
⚫ Dohvatanje ukupnog broja uređaja u sistemu 

cudaGetDeviceCount()

⚫ Dohvatanje karakteristika uređaja 
cudaGetDeviceProperties()

 Izbor uređaja:
⚫ Eksplicitno postavljanje aktivnog uređaja 

cudaSetDevice()

⚫ Izbor uređaja koji najbolje zadovoljava zadate uslove 
cudaChooseDevice()
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Upravljanje memorijom (1)

 Dva tipa memorijskih objekata
⚫ Linearna memorija

 Pristupa joj se pomoću 32-bitnih pokazivača

⚫ CUDA nizovi
 Specifični, netransparentni objekti koji se koriste za smeštanje i 

čitanje tekstura

 Alokacija memorije na uređaju
⚫ Linearna memorija (1D)
⚫ cudaMalloc(), cudaFree()

⚫ Linearna memorija sa padding-om (2D, 3D)
cudaMallocPitch(), cudaMalloc3D
 Parametar pitch govori o načinu poravnanja nizova u memoriji 

kako bi se zadovoljili uslovi sa kombinovani/sjedinjeni pristup

⚫ Alokacija CUDA nizova 
cudaMallocArray(), cudaFreeArray()
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Upravljanje memorijom (2)

 Alokacija page-locked memorije

⚫ Brži pristup kada se ne dozvoljava zamena stranica
cudaHostAlloc(), cudaMallocHost(), cudaFreeHost()

 Memorijski transferi sa domaćina na uređaj, 
uređaja na domaćina i unutar samog uređaja

⚫ Sinhorni i asinhroni transferi

 Asinhrone funkcije nastavak Async u imenu

⚫ cudaMemcpy(), cudaMemcpy2D(), cudaMemcpyToArray(), 
cudaMemcpyFromArray(), cudaMemcpyToSymbol(), 
cudaMemcpyFromSymbol()

 Dohvatanje adrese simbola
cudaGetSymbolAddress()
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Upravljanje teksturama i površima

 2D prostorni keševi
⚫ Teksture se samo čitaju, po površima može i da se piše

 Vezuju se za posebne objekte
⚫ Ti objekti se zatim koriste u okviru jezgra
⚫ CUDA nizove (optimizovan pristup)
⚫ 1D linearnu memoriju (uz ograničenja)
⚫ Funkcije za rad sa teksturama:

cudaBindTexture(), cudaUnbindTexture()

 Teksturama se pristupa pomoću posebne hardverske 
jedinice i ugrađenih funkcija jezgra
⚫ tex1D(), tex2D(), tex3D()
float u, v; // Coordinates

float4 value = tex2D(myTexRef, u, v);
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Saradnja sa drugim API

 CUDA može da sarađuje 
sa OpenGL, DirectX (Direct3D) i Vulcan API

 Baferi iz spoljnih API-ja se mogu 
direktno mapirati u CUDA adresni prostor
⚫ Različite ručke, tipično zavisne od OS-a i API-ja

⚫ Podaci se mogu čitati i obrađivati

⚫ Podaci se mogu upisati i proslediti dalje na obradu

⚫ Može se vršiti sinhronizacija nad ovim objektima

⚫ Funkcije kao što su:
cudaExternalMemoryGetMappedBuffer();

cudaExternalMemoryGetMappedMipmappedArray();
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Upravljanje greškama

 Sve funkcije koje su deo CUDA runtime vraćaju strukturu 
cudaError_t sa opisom greške

⚫ Postoji oko 25 različitih kodova grešaka

 Poslednji kod greške koji je proizveo neki od poziva se 
može dobiti sa:
⚫ cudaGetLastError()

⚫ Greške asinhronih poziva se dohvataju ovom funkcijom ili 
prilikom poziva neke druge CUDA funkcije

 String koji opisuje odgovarajuću grešku 
se može dobiti pozivom:
⚫ cudaGetErrorString()
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Upravljanje događajima

 CUDA podržava koncept događaja

⚫ Koriste se za praćenje napretka asinhronih događaja

⚫ Događaj se beleži onda kada se izvrše 
sve komande zadate tokom komandi

⚫ Događaji se predstavalju tipom cudaEvent_t, 

a koriste se funkcije: 
cudaEventCreate(), cudaEventRecord(), 
cudaEventSynchronize(), cudaEventElapsedTime(), 
cudaEventDestroy()

 Vreme na uređaju se može meriti pomoću funkcija 
koje rade sa CUDA događajima

⚫ Koriste se precizni GPU tajmeri
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Konkurentno izvršavanje

 Kako bi se omogućilo konkurentno izvršavanje i na 
domaćinu i na uređaju, određeni broj poziva je asinhron

⚫ Pozivi jezgru

⚫ Memorijski transferi unutar uređaja

⚫ Memorijski transferi označeni Async funkcijama

⚫ Po potrebi, sinhronizacija se može obaviti funkcijom:
cudaDeviceSynchronize()

 Takođe, konkurentnost se može postići:

⚫ Preklapanjem memorijskih transfera i izvršavanja jezgra 
korišćenjem koncepta tokova (streams)

⚫ Paralelnim izvršavanjem jezgara na uređajima 
koji to dozvoljavaju (cc >= 2.0)
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Dinamički paralelizam

 Grafički procesori sa cc >= 3.5 omogućavaju 
da se u okviru jednog jezgra omoguće pozivi drugim jezgrima

⚫ Dinamički paralelizam

⚫ Mogućnost da jezgro kreira novi posao direktno na GPU

 Dinamički paralelizam omogućava da se smanji potreba 
za transferom kontrole toka između domaćina i uređaja

⚫ Izvršna konfiguracija novog poziva nekom jezgru može 
da se zada na GPU

⚫ Omogućena je sinhronizacija između jezgara – roditelja i potomaka

 Pogodno za probleme koji iskazuju:

⚫ Ugneždeni i hijerarhijski paralelizam

⚫ Potrebu za rekurzijom

⚫ Iregularnu strukturu petlji
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CUDA biblioteke (1)

 CUBLAS
⚫ CUDA Basic Linear Algebra Subprograms (BLAS)
⚫ Implementacija BLAS standarda na CUDA
⚫ Kompatibilna sa FORTRAN aplikacijama
⚫ Uključuje se zaglavljem cublas.h

 CUFFT
⚫ CUDA Fast Fourier Transform (FFT)
⚫ Uključuje implementaciju najvažnijih i najkorišćenijih CUDA 

algoritama
⚫ Uključuje se zaglavljem cufft.h

 CURAND
⚫ Implementira generisanje slučajnih brojeva na uređaju
⚫ Uključuje se zaglavljem curand.h i curand_kernel.h
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CUDA biblioteke (2)

 NVIDIA Performance Primitives (NPP)

⚫ Implementira veliki broj gotovih algoritama 
za obradu slike i video signala

 CUSPARSE 

⚫ Implementira algoritme za rad sa retkim matricama

 Thrust biblioteka

⚫ Thrust je biblioteka CUDA šablona za C++ bazirana 
na Standard Template Library (STL). 

⚫ Thrust dozvoljavam programeru da implementira HPC aplikacije 
sa minimalnim programerskim naporom

⚫ Implementiran je API visokog nivoa

 Memorijski transferi su sakriveni od korisnika i sl.
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