Multiprocesorski sistemi

GPU racunarstvo
(GPGPU i CUDA)

Marko Misi¢
135114MUPS, 13E114MUPS, 13M114MUPS

2025/2026.

Uvod u GPU racunarstvo (1)

o Graficki procesori (Graphics Processing Unit, GPU) su
prvobitno bili namenjeni za obradu grafike
Specijalizovani za racunski intenzivne, graficke algoritme
o Narastajuca industrija video igara,
kao i potreba u komercijalnim aplikacijama je izvrsila
veliki pritisak na razvoj grafickih procesora
3D grafika (pocetkom *90ih)
o Vremenom su ovi procesori evoluirali
u paralelne i viskoprogramabilne procesore
Orijentisani su ka obradi velike koli¢ine podataka

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 2/146

Uvod u GPU racunarstvo (2)

o Graficki procesori se koriste
za racunanja opste namene u poslednjih 20+ godina

o Taj trend se zove racunanje opste namene
koriscenjem grafickih procesorskih jedinica

General-Purpose computation on GPUs (GPGPU)

o Heterogeno racunarstvo
Koris¢enje racunskih resursa koji najbolje odgovaraju poslu

Throughput

Latency Cores Cores

Configurable On-chip
Logic/Cores MERES

DSP Cores

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

3/146

Uvod u GPU racunarstvo (3)

o Sirok spektar primena
FiziCke simulacije (computational physics)
Hemijske simulacije scomputationa/ chemistry)
Bioloske simulacije (/ife sciences)
Finansijska izraCcunavanja (computational finance)
Racunarska vizija (computer vision)
Obrada signala
Baze podataka Co
Masinsko ucenje i vestacka inteligencija (dominantno!)

Medical
Imaging

Data Intensive
Analytics

Financial Scientific Engineering

Analysis Simulation Simulation

Digital Audio Digital Video Computer
Processing Processing Vision

Electronic
Design
Automation

Biomedical
Informatics

Statistical
Modeling

Numerical
Methods

AI/ML

Interactive Ray Tracing
Physics Rendering

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 4/146

CUDA performanse za razliCite aplikacije

CUDA
Prednost

20x

1OX I

Rigid Body
Physics
Solver

197x
[]
Matrix Wave Biological Finance
Numerics Equation Sequence
Match Black Scholes:
BLASLI: FDTD: 4.7 GOptions/s
60+ GB/s 1.2 Geells/s SSEARCH:
BLASS: FFT: 5.2 Gceells/s

100+ GFLOPS 52 GFLOPS
(GFLOPS as defined by benchFFT)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 5/146

Zasto koristiti graficke procesore?

o Graficki procesori su postali vrlo fleksibilni i dostupni
Racunska snaga: 1 TFLOPS vs. 100 GFLOPS
Propusni opseg: ~10x veci
Nalaze se u gotovo svakom racunaru

1200

=9 AMD (GPU)
=8 NVIDIA (GPU)

1000 | 4= 1nte| (CPU)

@
o
=3
2
4 7
g00| Many-core GPU g 0 1000X
) In 10 years
) 108
Q.
9] 0
o 5
g 600 2 108
0])
é% 104
400 °
= 102
200

Multi-core CPU

[X J
Single-threaded CPU perf

dual-core

quad-core

2007 2008 2009 1980 1990 2000 2010 2020 2030

1
éhOl 2002 200 2004 2005 2006
Year

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 6/146

CPU vs. GPU (1)

o Fundamentalna razlika izmedu centralnog i
grafickog procesora je u njihovom dizajnu

CPU je orijentisan

ka tradicionalnom izvrsenju poslova

GPU je orijentisan ka obradi podataka

o Mnogo vise tranzistora je namenjeno obradi podataka
nego kesiranju i kontroli toka

CPU

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

Core

Local Cache

| Registers |
SIMD Unit

Compute Unit
| Cache/Local Mem |

_ Regsters | |5
SIMD
Unit '

Buipeaiy

GPU

7/146

CPU vs. GPU (2)

o Centralni procesor je orijentisan
ka smanjenju kasnjenja (/atency)
Hijerarhija keS memorija
o Veliki keSevi koji konvertuju

spore pristupe memoriji
u brze pristupe kes memorijama

o Hijerarhija nivoa - L1, L2, L3...
Sofisticirana kontrola toka

o Predvidanje skokova

o Prosledivanje podataka
Manji broj procesora

o Moc¢ne ALU jedinice

o Operacije se izvrsavaju veoma brzo
Pipeline veliCine 20 - 30 faza

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

Core

Local Cache

SIMD Unit

8/146

CPU vs. GPU (3)

-V o - “ . . LIT T T T TT I T]]

o Graficki procesori su orijentisani gl EEEEENEEEEEEEEE
ka povecCanju propusnog opsega T[T
(throughput) ~EERRNNNANNERENEN
Veliki broj procesnih jedinica -

o Energetski efikasnije ALU jedinice

Veoma male kes memorije
o Instrukcijski kes) :
Compute Unit

o Povecavanje) Cache/Local Mem |
propusnog opsega memorije Registes |E.
SIMD |
o Nema predvidanja skokova Unit IL
o Nema prosledivanja podataka

Jednostavna kontrola toka
o Potreban veliki broj niti da bi se sakrila kasnjenja!

Buipealy

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 9/146

Za sta je GPU pogodan? (1)

o Graficki procesor je specijalizovan za
racunski intenzivna, paralelna izraCunavanija
Pogodan za raCunanja data-parallel tipa
Isti skup instrukcija se izvrSava

nad velikim brojem podataka istovremeno

o Smanjena je potreba za
sofisticiranom kontrolom toka
Veliki broj izraCunavanja se odigrava
u odnosu na jedan pristup memoriji
o Sva kasnjenja prilikom pristupa memoriji
se mogu sakriti intenzivnim izraCunavanjem
umesto velikim keSevima podataka

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 10/146

Za sta je GPU pogodan? (2)

o Centralni i graficki procesor
se najbolje koriste u rezimu koprocesiranja

o Centralni procesor treba koristiti
za sekvencijalni deo aplikacije, gde je bitno kasnjenje
CPU je najmanje red veliCine brzi od GPU
prilikom izvrSavanja sekvencijalnog koda (10x+ puta)

o Ulaz, izlaz, priprema podataka...
o Graficki procesor treba koristiti
za delove koda koji trose najvise vremena
Paralelni deo aplikacije
Tipicno za ubrzanje kritiCnih operacija
koje obraduju veliku koliCinu podataka (10x+ puta)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 11/146

Istorijat GPU programiranja (1)

o Graficki procesori su postali programabilni
nocetkom 2000-ih sa pojavom
programabilnih shader-a

o Programiranje je vrseno kroz graficke API-je
OpenGL, DirectX...
Mnoga ogranicenja

o Hardverska i softverska
(pristup memoriji, API overhead...)

o Jezik Brook (Stanford, 2004) je prvi doneo GPGPU
programiranje
Ograniceni dometi
Zavisnost od grafickih API-ja

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 12/146

Istorijat GPU programiranja (2)

o NVIDIA CUDA (2007)
Najzreliji standard, prisutan do danas, CUDA 13.1 (2026)

o AMD/ATI pokusaji
Brook+, FireStream, Close-To-Metal, ROCm 7.1 (2025)

o Microsoft DirectCompute (DirectX 10/DirectX 11)

o OpenCompute Language, OpenCL (2009)

Otvoreni standard koji je podrzala grupa kompanija
OpenCL 3.0 (2025)

o Podrska za paralelizaciju direktivama
OpenACC 1.0 (2011), 3.4 (2025)
OpenMP 4.0 (2013), 5.0 (2018), 6.0 (2024)

o Intel OneAPI i SYCL/Data Parallel C++ (2019)
o Programiranje kroz biblioteke i namenske radne okvire

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 13/146

GPU programiranje danas (1)

o Tri nacina za ubrzavanje rada aplikacija na GPU

Koriscenjem biblioteka i radnih okvira
o cuBLAS, cuFFT, Magma, OpenCV, Thrust (CUDA STL), kokkos
o TensorFlow/TensorRT, cuDNN
Koriscenjem prevodilackih direktiva
o OpenACC, OpenMP
Koris¢enjem prosirenja programskih jezika
o CUDA, OpenCL, OneAPI, ROCm/HIP

Aplikacije
g v ProsSirenja
. Prevodilacke :
Biblioteke o programskih
direktive e
jezika
Jednostavno upotrebe Jednostavno upotrebe Najbolje performanse
Dobre performanse Portabilnost Fleksibilnost

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

14/146

GPU programiranje danas (2)

o Dostupno u velikom broju programskih jezika
Razliiti nivoi i nacini programiranja
High-level vs. low-level pristupi

Numerical analytics®| MATLAB,, Mathematica, LabVIEW

Python >| PyCUDA, Numba
Fortran | CUDA Fortran, OpenACC
~ CP| cupAc, openAcc
C++ B>| CUDA C++, Thrust

C# P> | Hybridizer

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 15/146

GPU programiranje danas (3)

o Veliki broj blblloteka sa GPU akceleracuom

DEEP LEARNING CUDNN

CcuDNN TensorRT |

JB cuSOLVER

| KVDEC_)
—

DeepStream SDK

LINEAR ALGEBRA

SIGNAL, IMAGE,
VIDEO

PARALLEL
ALGORITHMS

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 16/146

CUDA pregled (1)

o Compute Unified Device Architecture (CUDA)

Hardverska i softverska arhitektura
za upravljanje izraCunavanjem opste namene
na grafickim procesorskim jedinicama

Dostupna na NVIDIA grafickim procesorima

o API dostupan i na drugim akceleratorima
kroz 3rd party podrsku

o Opstenamenski programski model
SIMD / SPMD

Korisnik pokrece grupe niti na grafickom procesoru

o Programer eksplicitno izrazava data-paralle/ model
kroz izvrSavanje pomocu niti (DLP via TLP)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 17/146

CUDA pregled (2)

o Prati je odgovarajuca
softverska podrska
Drajver i odgovarajuci API
Ekstenzija jezika C
za laksSe programiranje
Alati
o Prevodilac, debager, profajler
Gotov softver i biblioteke

o GPU Computing SDK
o CUFFT, CUBLAS...
o Nezavisni proizvodaci

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

CPU
Application

|

CUDA Libraries
(FFT, BLAS)

| !

CUDA Runtime

'

CUDA Driver

!

GPU

18/146

CUDA pregled (3)

o Aktuelne arhitekture NVIDIA GPU

Definise skup mogucnosti koje podrzava hardver

0 Maxwell, Pascal, Volta,
Turing, Ampere, Ada Lovelace, Hopper, Blackwell, Rubin

Majori minor revizije arhitekture koje definisu
karakteristike hardvera i instrukcijskog seta

o Compute capability (najnovije 12.1)

o Aktuelna verzija CUDA Toolkit-a je 13.1

Definise nivo softverske podrske
o Prevodilac, alati, biblioteke

DefiniSe mogucnosti na nivou prosirenja jezika
o Upravljanje memorijom, ugradene funkcije, itd.

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 19/146

Programski model (1)

o Graficki procesor se posmatra
kao koprocesor (uredaj, compute device)
u odnosu na centralni procesor (domacin, Aost)
Izvrsava racunski intenzivan deo aplikacije
IzvrSava jako veliki broj niti u paraleli
Poseduje svoju sopstvenu DRAM memoriju

o Deo aplikacije koji vrsi obradu nad podacima izvrsava se
u vidu jezgra (kernel) koristeci veliki broj niti
GPU niti su lake (/ightweight)
o Imaju veoma mali rezijski trosak prilikom stvaranja
GPU su potrebne hiljade niti za punu efikasnost
o ViSejezgarnom procesoru je potrebno samo nekoliko

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 20/146

Programski model (2)

o CUDA program cine integrisani delovi koda
za centralni i graficki procesor

Serial Code (host) g

DI DI D)) DI

Parallel Kernel (device) ‘ ‘ ‘ ‘
KernelA<<< nBlk, nTid >>>(args); ||s > || S22 || ¢ S| ... | S5

Serial Code (host) g

Parallel Kernel (device)
KernelB<<< nBIk, nTid >>>(args);

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

21/146

Izvrsni model (1)

o CUDA jezgro se izvrsava pomocu niza niti
rasporedenlh u odgovarajucu resetku (grid)

Sve niti izvrSavaiju isti kod
o SIMD/SPMD/SIMT model izvrSavanja

Svaka nit ima jedinstveni identifikator (indeks) koji koristi
da bi vrsila pristup memoriji i donosila odluke

threadID

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

0

1

2

3

4

5

6

7

float x = input[threadID];

float y = func(x);
output[threadID] = y;

22/146

Izvrsni model (2)

o Niti unutar resetke su podeljene u nezavisne blokove
Svaki blok ima jedinstven identifikator unutar resetke
Niti unutar istog bloka mogu da saraduju
o Koristeci sinhronizaciju, atomske operacije i deljenu memoriju
Niti iz razlicitih blokova ne mogu da saraduju

Omogucava skalabilnost izvrSavanja na razliCitom hardveru
Thread Block 0 Thread Block 1 Thread Block N - 1

threadID 0Ol 1|1 2| 3| 4| 5|1 6| 7 0|l 11 2] 3| 4| 5| 6|7 ol 11 21| 3| 4| 5] 6] 7

float x =

float x = float x =
input[threadlD] ; input[threadID] ; input[threadID] ;
float y = func(x); float y = func(x); EEnm float y = func(x);

output[threadID] = y; output[threadID] = y; output[threadID] = y;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 23/146

Izvrsni model (3)

. .-V Host Device
o Jezgro se konfigurise _
prilikom svakog poziva o
_ _ . Kernel » Block Block | Block
Zadaju se dimenzije L 0.0 | L0 (20
bloka i resetke slock|| Black | Block
Blok i reSetka mogu biti Ga) e |} @Y
visedimenzionalni A oriag
o 1D, 2D li 3D Kool =/ ‘
o Niti i blokovi imaju 7| | o
identifikatore (indekse) Block (L 1) i
Tako da mogu da odluce I
nad kojim podacima da rade o

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 24/146

Izvrsni model (4)

o Za svaki blok se moze odrediti
indeks unutar resetke
Block ID: 1D, 2D, 3D
blockIdx promenljiva
o Za svaku nit se moze odrediti
indeks unutar bloka
Thread ID: 1D, 2D, 3D
threadIldx promenljiva
o Pojednostavljuje pristup
memoriji pri obradi
viSedimenzionalnih struktura
Obrada slika i sl.

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

Device

Grid 1
Block Block Block
(0, 0) (1,0) (2, 0)
Block Block | Block
0, 1) (1, 1) (2, 1)
Block (1, 1)

25/146

Primer sabiranja dva vektora (1)

o Tradicionalni sekvencijalni C kod:

// Compute vector sum C = A+B
void vecAdd(float* A, float* B, float* C, int n) {
for (1 = 0, 1 < n, i++)
C[i] = A[i] + B[i];
}
int main () {
// Memory allocation for h A, h B, and h c
// I/0 to read h A and B

vecAdd(h A, h B, h C, N);
}

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 26/146

Primer sabiranja dva vektora (2)

o Na grafickom procesoru,

svaka nit Ce biti zaduzena za izraCunavanje

jednog elementa rezultujuceg vektora

A[n]

B[n]

A[0] | A[1] | A[2]
B[O] | B[1] | B[Z]
C[o] | C[1] | C[2]

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

C[n]

27/146

Primer sabiranja dva vektora (3)

o Kod koji ¢e izvrSavati centralni procesor
mora biti restrukturiran:

void vecAdd(float* A, float* B, float* C, int n) {
intsize = n* sizeof(float);
float* devA, devB, dev(C;

1. // Allocate device memory for A, B, and C
2. // copy A and B to device memory

3. // Kernel launch code - to have the device
// to perform the actual vector addition
// Copy vector C from the device memory

5. // Free device vectors

(18

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 28/146

Memorijski model (1)

o Svaka nit moze da:
Cita/pige po registrima
dodeljenim na nivou niti
Cita/pise po lokalnoj
(privatnoj) memoriji na
nivou niti
Cita/piSe po deljenoj
memoriji na nivou bloka
Cita/pise po globalnoj
memoriji na nivou uredaja

Grid

Block (0, 0)

’

Block (1, 0)

] e

Thread (0, 0)| Thread (1, 0)

Thread (0, 0)| ' Thread (1, 0)

Cita konstantnu memoriju
na nivou uredaja

Cita memoriju za
teksture na nivou uredaja

Host

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

29/146

Memorijski model (2)

o Centralni procesor moze
da Cita/pise po globalnoj,
konstantnoj i memoriji za
teksture grafickog
Procesora

Sve su smestene u DRAM
o Sadrzaj globalne
memorije je dostupan
svim nitima
Pristup ima
veliko kasnjenje

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

Device

Block (0, 0)

—

Block (1, 0)

—

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

a

Host

A 4

30/146

Memorijski model (3)

o Deljena memorija se moze koristiti
na nivou bloka niti
Male veliCine (16-96 KB)

Za red velicine brzi pristup
od globalne memorije

Niti su zaduZene da

eksplicitno ucitaju podatke P =P, +P,+P,+P,
o Deljena memorija omogucava da

podaci budu blizi ALU jedinicama

Smanjuje potrebu

za pristup globalnoj memoriji

Smestanje medurezultata

sa malim kasnjenjem

Povecava intenzitet racunanja time

sto su podaci blize procesorima

PovecCava _
memorijski propusni opseg

Py’=P +P,+P;+P,

Py'=P+Py+P3+P,

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 31/146

Upravljanje memorijom

o Centralni i graficki procesor poseduju
odvojene memorijske prostore
o CUDA podrzava dva rezima upravljanja memorijom
Implicitni i eksplicitni
o U eksplicithom rezimu programer vrsi

alokaciju memorije |
odgovarajuce memorijske transfere

Alokacija memorije na strani domacina se Vvrsi
staticki ili standardnim C pozivima

o U implicithom rezimu programer vrsi
samo alokaciju memorije
Na strani domacina i uredaja
Zahteva podrsku CUDA Unified memory

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 32/146

Alokacija memorije (1)

o VrSi se putem odgovarajucih poziva API funkcija

Postoje razliCite varijante, u zavisnosti od nacina
smestanja podataka u memoriju

O cudaMalloc ()

Alocira objekat u globalnoj memoriji uredaja

Zahteva dva parametra
o Adresu pointera na alocirani objekat
o VeliCinu alociranog objekta u bajtovima

O cudaFree ()

Oslobada objekat iz memorije uredaja
Zahteva pointer na objekat

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 33/146

Alokacija memorije (2)

O cudaMallocManaged ()

Podrska za Unified memory

Alocira objekat na domacinu i
u globalnoj memoriji uredaja

Zahteva dva parametra
o Adresu pointera na alocirani objekat
o Velicinu alociranog objekta u bajtovima
o Memorijski transferi se desavaju u pozadini
Izvrsno okruzenje ih samo vrsi

Zahteva upotrebu sinhronizacije
pre upotrebe rezultujuceg objekta

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 34/146

Alokacija memorije (2)

o Alokacija memorije na strani domacina se Vvrsi
staticki ili standardnim C pozivima

o Primer alokacije memorije za sabiranje dva vektora:
#define N 256

int A[N], B[N], C[N];
int size = N*sizeof (int);
int *devA, *devB, *dev(C;

cudaMalloc((void**) &devA, size));
cudaMalloc((void**) &devB, size) ;
cudaMalloc((void**) &devC, size) ;

// Memory transfers and kernel launch
cudaFree (devA) ;

cudaFree (devB) ;
cudaFree (devC) ;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 35/146

Memorijski transferi (1)

o Za prenos podataka izmedu domacina i uredaja,
kao i unutar samog uredaja postoje odgovara]uu POZiVi
Razlicite varijante, u zavisnosti od organizacije podataka
Sinhroni/asinhroni i blokirajuci/neblokirajuci transferi
O cudaMemcpy ()
Obavlja memorijske transfere
Zahteva Cetiri parametra
o PokazivaC na odrediste
o Pokazivac na izvor
o Veli€inu podataka koji se prenose u bajtovima
o Tip transfera
Tipovi transfera
o Host to Host (cudaMemcpyHostToHost)
o Host to Device (cudaMemcpyHostToDevice)
o Device to Host (cudaMemcpyDeviceToHost)
o Device to Device (cudaMemcpyDeviceToDevice)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

36/146

Memorijski transferi (2)

o Primer memorijskih transfera prilikom sabiranja dva
vektora:

#define N 256

int A[N], B[N], C[N];
int size = N*sizeof (int);
int *devA, *devB, *dev(C;

// Device memory allocation

cudaMemcpy (devA, A, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (devB, B, size, cudaMemcpyHostToDevice) ;

// Kernel launch
cudaMemcpy (C, devC, size, cudaMemcpyDeviceToHost) ;

// Free device memory

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 37/146

Deklaracija CUDA jezgra

o Kod koji se izvrSava na grafickom procesoru se
piSe u vidu odgovarajuce funkcije — jezgra
__global
void vecAdd(int *devA, int *devB, int *devC, int n);

o Funkcije - jezgra imaju sledece osobine
Definisu se kvalifikatorom _ global
Moraju biti void funkcije

Parametri jezgra mogu biti skalarni podaci ili
pokazivaci na podatke alocirane na uredaju

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 38/146

Pozivanje CUDA jezgra (1)

o Jezgro mora biti pozvano pomocu
odgovarajuce izvrsne konfiguracije

Zadaje se pomocu sintaksne ekstenzije jezika C,
pomocu trostrukih zagrada <<< i >>>

myKernel<<< n, m >>>(argl, ..);

Parametri n i m definiSu organizaciju
blokova niti na nivou resetke i niti na nivou bloka

Postoje jos dva opciona parametra
o Za eksplicitno rezervisanje deljene memorije na nivou bloka
o Za upravljanje tokovima (streams)
o Svaki poziv jezgru je asinhron
Kontrola se odmah vraca centralnom procesoru

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 39/146

Pozivanje CUDA jezgra (2)

o Primer poziva jezgra:
Dvodimenzionalna resetka 64x128
Dvodimenzionalni blok 32x8

__global void KernelFunc(...);

dim3 DimGrid (64, 128); // 8192 thread blocks
dim3 DimBlock (32, 8); // 256 threads per block
KernelFunc<<< DimGrid, DimBlock >>>(...);

Tip dim3 je ugradeni CUDA tip

Unutar kernela svaka nit odreduje podatke nad kojima cCe raditi
pomocu ugradenih promenljivih threadIdx i blockIdx

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 40/146

Primer sabiranje dva vektora (4)

o Kompletan program

#define N 1024
void vecAdd(float* A, float* B, float* C, int n);
int main (int argc, char **argv) {

int size = N *sizeof(int);

int A[N], B[N], C[N];

// Load arrays

vecAdd (A, B, C, N);

// Process results

return 0O;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 41/146

Primer sabiranje dva vektora (5)

void vecAdd(float* A, float* B, float* C, int n){
int size = n * sizeof(float);
float *devA, *devB, *dev(C;
cudaMalloc((void **) &devA, size);
cudaMemcpy (devA, A, size, cudaMemcpyHostToDevice) ;
cudaMalloc((void **) &devB, size);
cudaMemcpy (devB, B, size, cudaMemcpyHostToDevice) ;
cudaMalloc((void **) &devC, size);

// Run ceil (N/256) blocks of 256 threads each
vecAddKernel<<<ceil (N/256), 256>>>(devA, devB, devC, n);

cudaMemcpy (C, devC, size, cudaMemcpyDeviceToHost) ;
cudaFree (devA) ; cudaFree (devB); cudaFree (devC) ;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 42/146

Primer sabiranje dva vektora (6)

__global void vecAddKernel
(fFloat* devA, float* devB, float* devC, int n) {
int idx =
blockIdx.x * blockDim.x + threadIdx.x ;
if (1dx < n)
devC|[idx] = devA[idx] + devB[idx];
}
o Svaka nit racuna indeks rezultuju¢eg elementa

koji treba da izraCuna

Na osnovu blockDim.x i blockIdx.x odreduje pomeraj bloka
u odnosu na pocetak niza

Na osnovu threadIdx.x odreduje “globalni ID”
konkretnog elementa koji treba da obradi

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 43/146

Primer sabiranje dva vektora (7)

Global ID 26

[
»

threadIdx.x

threadIdx.x

threadIdx.x

0|1]2[3|4|5|6|7|0]1

213(4]|5

6

1

213(4]|5

6

0|1

threadIdx.x
314|5

6

blockIdx.x = 0

o Primer sabiranja dva niza od 32 elementa:

blockIdx.x = 1

Jednodimenzionalni blok i resetka
gridDim(4, 1, 1)

blockDim (8,

1, 1)

blockIdx.x = 2

o Indeks konkretnog elementa koji
svaka nit treba da obradi se dobija kao:
idx = blockDim.x * blockIdx.x + threadIlIdx.x

o Za konkretnu nit 2 u bloku 3:

idx = 3*8 + 2

= 26

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

blockIdx.x = 3

44/146

CUDA API

o CUDA aplikativni programabilni interfejs (API) je
ekstenzija ANSI standarda jezika C

Ekstenzija se sastoji od prosirenja jezika C i
izvrsne biblioteke (runtime)

ProSirenja su nacinjene za delove koda
namenjene izvrsavanju na grafickom procesoru

o Za odredene funkcionalnosti postoji podrska u hardveru

o Izvrsna biblioteka implementira:

Podskup C funkcija koje mogu da se izvrsavaju
i na sistemu domacinu i na uredaju

Skup funkcija za upravljanje i kontrolu uredaja
Skup funkcija specificnih za uredaj (intrinsics)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 45/146

CUDA funkcije (1)

o CUDA deklaracije funkcija
Jezgra moraju imati kvalifikator __global

Kvalifikator __host _ oznacava funkcije
koje se izvrsavaju samo na strani domacina

Kvalifikator device oznacava funkcije

koje se izvrsavaju samo na strani uredaja

Kvalifikatori __host i

device _ se mogu Koristiti zajedno

Izvrsava: Poziva:
__device float deviceFunc() uredaj uredaj
__global void kernelFunc() uredaj domacin
__host float hostFunc() domacin domacin

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

46/146

CUDA funkcije (2)
o Ogranicenja CUDA funkcija

device funkcijama se ne moze uzeti adresa

o One se najcesce implementiraju kao inline funkcije

Za funkcije koje se izvrsavaju na uredaju:

o Ograniceno dozvoljena rekurzija
Hardversko ogranicenje — stek u deljenoj memoriji
Od Fermi arhitekture GPU-ova

o Nije dozvoljeno deklarisanje
statickih promenljivih unutar funkcije

o Nisu dozvoljene funkcije
sa varijabilnim brojem argumenata
Funkcije poput print£f (.. .)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 47/146

CUDA kvalifikatori promenljivih

o Automatske promenljive bez kvalifikatora se smesStaju u registre
Osim velikih struktura i statickih nizova koji se smestaju u lokalnu memoriju
o Pokaziva¢i mogu da pokazuju samo na objekte iz globalne memorije:
Alocirane na strani domacina i prosledene jezgru
__global void KernelFunc(float* ptr);
Staticki deklarisane objekte na strani uredaja
float* ptr = &globalVar;

o Kvalifikator device je opcion

ako su navedeni kvalifikatori __shared ili _ constant
Memorija | Opseg | Zivotni vek
__device ~_ shared int SharedVar; deljena blok blok
__device int GlobalVar; globalna grid aplikacija
__device _ constant _ int ConstantVar; | konstantna | grid aplikacija

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 48/146

Ugradeni tipovi

o Izvrsna biblioteka obezbeduje
odredene ugradene tipove podataka

[ul]char[l..4], [u]lshort][l..4],
[ul]int[1..4], [u]llong[l..4], float[l. .4]

o To su strukture koje imaju x, y, z, w polja:
uint4 param;

int y = param.y;
o Ugradeni tip dim3
Zasnovan na uint3
Koristi se za zadavanje dimenzija

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 49/146

Ugradene promenljive

O dim3 gridDim;
Dimenzije reSetke u broju blokova (1D, 2D ili 3D)
Maskimalne dimenzije 2147483647 x 65535 x 65535
O dim3 blockDim;
Dimenzije bloka u broju niti (1D, 2D ili 3D)
Maksimalne dimenzije (blok i reSetka)

o Tesla arhitektura 512 niti (512 x 512 x 64)
o Kasnije arhitekture 1024 niti (1024 x 1024 x 64)

O dim3 blockIdx;

Indeks bloka unutar resetke
O dim3 threadlIdx;

Indeks niti unutar bloka

o Maksimalne vrednosti pojedinin parametara su hardverski zavisne
Mogu biti podlozne promenama u buducnosti

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 50/146

Ugradene matematicke funkcije

o Izvrsna biblioteka obezbeduje
odredeni skup matematickih funkcija

pow, sqgrt, cbrt, hypot
exp, exp2, expml
log, log2, 1logl0O, loglp
sin, cos, tan, asin, acos, atan, atan2
sinh, cosh, tanh, asinh, acosh, atanh
ceil, floor, trunc, round

o Kada se izvrSavaju na strani domacina,

koriste se implementacije iz standardne C biblioteke

Podrzane samo za skalarne tipove

Varijante koje imaju slovo £ u nastavku imena, poput sinf rade sa
podacima jednostruke preciznosti (£loat)

Postoje i brze, ali manje precizne varijante ovih funkcija,
koje se mogu izvrsavati samo na strani uredaja
O sin, cos, tan

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 51/146

Prevodenje CUDA programa (1)

o Bilo koji izvorni kod koji sadrzi CUDA ekstenzije mora se
prevesti pomocu nvec prevodioca

o NVCC je prevodilac-omotac (compiler driver)
Radi tako sto poziva sve nepohodne alate i prevodioce
o cudacc, g++, cl, ...

o Izlazi NVCC prevodioca Ssu:

C kod kOIJI se izvrSava na strani domacina (CPU kod) i koji se
mora dalje prevesti odgovarajucim prevodiocem

PTX (Parallel Thread eXecution) kod
o Predstavlja neku vrstu medukoda za graficki procesor
o Bilo koji program koji sadrzi CUDA pozive, zahteva
sledece dve dinamicke bilioteke:
CUDA runtime biblioteku (cudart)
CUDA core biblioteku (cuda)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 52/146

Prevodenje CUDA programa (2)

Target code
ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 53/146

Prevodenje CUDA programa (3)

Virtual

Target code

Physical

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

54/146

NVCC i PTX virtualna masina

float4 me = g?f[gtid]; O EDG preprocesor
me.xX += me.y * me.z,
Razdvaja GPU
od CPU koda
o Open64
Generise GPU PTX
asemblerski kod

o PTX kod
Just-in-time prevodenje
Omogucava izvrsavanje
na razliCitim ISA

(Instruction Set
Architecture)

1d.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 55/146

Debagovanje CUDA programa

o Provera korektnosti koda kroz
NVIDIA Compute Sanitizer skup alata

memcheck
o Detektuje pristupe memoriji van opsega, curenja memorije i sl.

racecheck
o Detektuje utrkivanja u deljenoj memoriji

synccheck
o Detektuje nekorektnu sinhronizaciju na nivou bloka

Initcheck
o Detektuje neinicijalizovane pristupe globalnoj memoriji

o Interaktivho debagovanje kroz cuda-gdb
Pod Linux OS-om

Nsight Visual Studio Code Edition
o Intergracija sa VS Code, omogucava remote debugging

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 56/146

Profaliranje CUDA programa

o Paket Nsight

Nsight Systems
o Pocetna tacka za analizu performansi
o Vremenska linija za CPU i GPU na nivou sistema

o Detektuje velika uska grla kao Sto su spori memorijski transferi,
periode kada GPU ne radi, probleme u multi-GPU komunikaciji i sl.

Nsight Compute
o Informacije na nivou pojedinacnih jezgara
o Analiza da li je jezgro compute-bound ili memory-bound

o Moguce profajliranje na udaljenom racunaru

Prikupljanje informacija command /ine alatima Assess
Analiza kroz GUI na lokalnom racCunaru P ~
o Assess, Parallelize, Optimize, Deploy ' Deploy | Parallelize
(APOD) ciklus TR %
(Optimize\.

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 57/146

Visedimenzionalne resetke (1)

o Jezgro se moze izvrSavati i
U okviru visedimenzionalne resetke

Olaksava pristup memoriji
pri obradi viSedimenzionalnih struktura

Matrice, slike i sl.

host device

o Proizvoljna organizacija
na nivoul bloka 1 resetke
1D, 2D i 3D
o Tehnika podele problema ™
na plocice (tiles)
7iling tehnika E—

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 58/146

Visedimenzionalne resetke (2)

o Primer obrade slike koriScenjem 2D resetke
Jedna nit obraduje jedan piksel slike (matrice)
y

Blok
16x16
niti

Slika dimenzija 62x76

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 59/146

Visedimenzionalne reSetke (3)

o Adresiranje pojedinacnog elemenata matrice
Smestanje elemenata matrice po vrstama
o Tipicno za C/C++
Jedna nit obraduje jedan element matrice

Row * Width + Col = 2*4+1 =
M MO Ml MZ M3 M8 M9 MIO Mll M12 M13 M14 1\/[15

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 60/146

Studija sluCaja — mnozenje matrica (1)

o Potrebno je
pomnoziti dve matrice

/bog jednostavnosti
pretpostavimo kvadratne
o Jedna nit Ce biti zaduzena za
racunanje jednog
elementa

Svaka nit ce
pristupati WIDTH
puta elementima
matrica M i N

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

v
61/146

Studija sluCaja — mnozenje matrica (2)

o Tradicionalni sekvencijalni kod:

void MatrixMulOnHost
(float* M, float* N, float* P, int Width) {

for (int 1 = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
float sum = 0;
for (int k = 0; k < Width; ++k) {
float a M[i * width + k];
float b = N[k * width + j];
sum += a * b;

I~

}
P[i * Width + j] = sum;
}

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 62/146

Smestanje matrica u C-u

o Matrice se u C-u smestaju po vrstama
Matrica Ce uredaju biti preneta linearizovana

Svaka nit ¢e proracunati adresu elementa
kome treba da pristupi

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 63/146

Studija sluCaja — mnozenje matrica (3)

o CUDA program na strani domacina:

void MatrixMulOnDevice (float* M, float* N, float* P, int Width) {
int size = Width * Width * sizeof (float);
float *Md, *Nd, *Pd;
1. // Allocate and Load M, N to device memory
cudaMalloc (&Md, size) ;
cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice) ;
cudaMalloc (&Nd, size) ;
cudaMemcpy (Nd, N, size, cudaMemcpyHostToDevice) ;
// Allocate P on the device
cudaMalloc (&Pd, size) ;
//Kernel invocation code — to be shown later
3. // Read P from the device
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost) ;
// Free device matrices
cudaFree (Md) ; cudaFree (Nd); cudaFree (Pd);

N

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 64/146

Studija slucaja — mnozenje matrica (4)

o Jezgro:

__global void MatrixMulKernel
(float* Md, float* Nd, float* Pd, int Width) {

// Pvalue is used to store the element of the matrix
// that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadIdx.y * Width + k],
float Nelement = Nd[k * Width + threadIdx.x];
Pvalue += Melement * Nelement;

}
Pd[threadIdx.y * Width + threadIdx.x] = Pvalue;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 65/146

Studija sluCaja — mnozenje matrica (5)

o Jezgro pokrece sledeci kod:

// Setup the execution configuration
dim3 dimGrid (1, 1);

dim3 dimBlock (Width, Width) ;

tx

// Launch the device computation
threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>
(Md, Nd, Pd, Width) ;

ty

v

tx

Y.

\ 4
A

4
<«

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

v
66/146

Nedostaci predlozenog resenja (1)

o Koristi se samo jedan blok niti
Matrice mogu biti samo ogranicene veliCine

Nd

Md Pd

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 67/146

Nedostaci predlozenog resenja (2)

o Jedan blok niti raCuna matricu Pd

o Svaka nit raCuna jedan element Pd i pritom:
Ucitava vrstu matrice Md
Ucitava kolonu matrice Nd

IzvrSava jedno mnozenje i sabiranje
za svaki par elementa iz matrica Md i Nd

Odnos izmedu raCunanja i
pristupa (sporoj) globalnoj memoriji je mali (oko 1:1)

o 2 operacije
o 2 pristupa globalnoj memoriji
o VeliCina matrice ogranicena brojem niti
dozvoljenom unutar jednog bloka niti
Ogranicno arhitekturom (1024 niti)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 68/146

Studija slucaja —
mnozenje matrica (6)

o ReSenje — podeliti matricu
na podmatrice (¢//es)
koje Ce obraditi zasebni blokovi niti
Svaka nit racuna jedan element

VeliCina bloka niti Ce biti
jednaka veliCini podmatrice

& » »
<« » | >

A 4
ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 69/146

Studija sluCaja — mnozenje matrica (7)

o Primer mnozenja matrice 4x4,
koriscenjem blokova niti dlmenzua 2X2 niti

Block(0,0) Block(1,0)

\

Poo | Prol P20 | Pao| TILE. WIDTH =2

Vid, M, M Md, [TPORIP o

sz/o Pd3,0

Po1| Pri| P | Psy Md,,Md, Md, Md; RPd, |Pd;,

Poy | Pio|Pa2| Pap Pd,|Pd, 5|Pd,,Pd;

Pos | P13 Pos | Pss Pd5|Pd; 5(Pd, 5/ Pd; 5
Block(0,1) Block(1,1)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 70/146

Studija sluCaja — mnozenje matrica (8)

o Jezgro:

__global void MatrixMulKernel
(float* Md, float* Nd, float* Pd, int Width) {

// Calculate the row index of the Pd element and M
int Row = blockIdx.y * TILE WIDTH + threadIdx.y;
// Calculate the column index of Pd and N

int Col = blockIdx.x * TILE WIDTH + threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0O;

// Each thread computes one element of the block
submatrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];
Pd[Row * Width + Col] = Pvalue;

}
}

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 71/146

Hardverska implementacija (1)

o Graficki procesor se moze posmatrati
kao skup multiprocesora

o Svaki multiprocesor je skup 32-bitnih
skalarnih procesora SIMD arhitekture

o U svakom taktu, svaki procesor unutar

multiprocesora izvrsava istu instrukciju
UkljuCujuci skokove (grananja)

o Ovakav nacin izvrSavanja je skalabilan

Dodavanjem novih multiprocesora
popravljaju se performanse

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Processor 1

Processor 2

Processor M

72/146

Hardverska implementacija (2)

o Niti se izvrsavaju Software Hardware
na skalarnim procesorima 8 =
o Blokovi niti se izvréavaju Na Thread Processor
pojedinacnim multiprocesorima
Blokovi ne mogu da migriraju 09
o Nekoliko blokova niti moze 82222282 =i=
da se izvrsava na
jednom multiprocesoru it Streaming
U zavisnosti Multiprocessor (SM)

od potreba za resursima

o Registrima 22282 eeeee 22222 @@@ @%‘E‘

o Deljenom memorijom .
Grid Device

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 73/146

Hardverska implementacija (3)

o Primer arhitekture (stariji GT200 graficki procesor, compute capability 1.3)
240 skalarni procesora (SP) izvrsava niti jezgra
30 streaming multiprocesora (SM) sadrzi:
o 8 skalarnih procesora
o 16KB deljene memorije za saradnju na nivou bloka
o 1 jedinicu za rad u pokretnom zarezu dvostruke preciznosti
2 jedinice specijalne namene (SFU)
64KB registarski fajl

O
O

Multiprocessor

oo [ooloo] [ooljoo|ool [oo|oo|oo] [ooljooljoo] [oo|oo —
0o |oo||oo| |[oo|0o || 0| |[oo||oo||oo| |oo (S0 ([Oo|{|oo||oo —

OO |Oo||oo| |Do||oo||oo| |oo||oo|oo| |oo||oo||joo| |Do||oo|oo]

0o ||oo||oo| |oo|(Ooc||oa| |[oo||oo ||oo| |oo|(oo||og| ([Oo|{|oo||oo

| || | || { e || | || e || e | || | | { || || |:||:| Scalar
IO S R I | |Processors
oo [ooljoo| [ooloo|oo| [oo|joo|oo| [ooloo|joo] [oo|oo|oo [Z—= |

0o ||oo||co| |oo|loo|og| |[oo||oo|oo| |oo|(oo||og| (oo |{oo||oo

oo |og||oo| [oo|0o||og| |[oo||oo ||0o| (oo |(So||gog| ([Oo{|oo||oo

oo ||oo||oo| \[oofoo||oo| |oo||\oo (oo (oo (oo ool (oo {|oo||oo Shared

== =1 = = = = = = = = = =] =l = Memoary

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 74/146

Hardverska implementacija (4)

PCI Express 3.0 Host Interface

o Primer arhitekture
(noviji GP106-400-A1 GPU,
compute capability 7.0)
2 GPC
(Graphics Processing Clusters)
1280 CUDA jezgara

(skalarnih procesora)
10 streaming multiprocesora

(SM) sadrzi:
o 128 skalarnih procesora

o 96KB deljenje memorije
za saradnju na nivou bloka

o 6 32-bitnih

memorijskih kontrolera
o 256KB registarski fajl
o 1536KB L2 cache

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

IzvrSavanje blokova niti (1)

o Hardver rasporeduje blokove niti procesorima slobodno,
bez ikakvih ogranicenja
Jezgra su skalabilna nezavisno od broja paralelnih procesora
na kojima se izvrsavaju
Svaki blok se moze izvrsSiti u bilo kome relativnom poretku
u odnosu na druge blokove

Block 0 Block 1
Block 2 Block 3

Block 0 Block 1 Block 4 Block 5

Block 6 Block 7 Block O Block 1 Block2 Block 3

Block 2 | Block 3
vreme Block 4 Block5 Block6 Block?7

Block 4 | Block 5

Block 6 | Block 7
v

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 76/146

IzvrSavanje blokova niti (2)

o Niti se multiprocesorima dodeljuju na nivou bloka

NajviSe 8-32 blokova, zavisno od arhitekture,
ukoliko drugi resursi dozvoljavaju

Npr. na Volta arhitekturi sa compute capability 7.0,
najvise 2048 niti se moze izvrsavati na jednom multiprocesoru

o Primer: 2 bloka po 1024 niti ili 4 bloka po 512 niti

Multiprocesor je zaduzen za upravljanje i
rasporedivanjé niti za izvrsavanje

Multiprocesor odrzava blockIdx i threadIdx za svaku nit

SM 0 SM1
:] "‘ o | I ‘
t0t1t2 ... tm t0t1t2 ... tm
ANNNNNNNNYNY NNNNNNNNNY
Blocks
i KL]
Blocks .

ETF Beograd::Multiprocesorski sistemi::GPU ralunafstye 77/146

Rasporedivanje i izvrsavanje niti (1)

o Niti iz bloka se na SM-u
izvrsavaju u jedinicama
koje se nazivaju warp-ovi

SIMD izvrSavanje

1 warp = 32 niti

Warp je jedinica

za rasporedivanje na SM-u
Implementaciona odluka

o Ako se na SM-u izvrSava
2 bloka od po 1024 niti:

Svaki blok se deli na
1024 / 32 = 32 warp-a

Na SM-u ukupno 32 * 2 = 64
warp-a za izvrsavanje

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

— Block 1 Warps | — Block 2 Warps Block N Warps
oo o I) I oo o
t0t1t2 .. t31 t0tl1t2 ... t31 t0t1t2..t31
NNNNNNNNNN NNNNNNNNWN
p) P J)) J)))
&« 8 [| 8
Streaming Multiprocessor

Instruction Fetch/Dispatch

Shared Memory

SFU SFU

78/146

Rasporedivanje i izvrsavanje niti (2)

o Blokovi niti se u warp-ove dele na sledeci nacin:
Niti u okviru bloka se linearizuju po vrstama
Indeksi niti unutar bloka su rastuci i uzastopni
Warp-ovi se formiraju pocevsi od niti sa indeksom 0
Podela se uvek radi na isti nacin
o To znanje se moze iskoristiti kod kontrole toka

o Redosled izvrsavanja warp-ova
ne mora biti jednoznacan
Ukoliko postoje zavisnosti medu nitima
unutar jednog bloka, mora se vrsiti sinhronizacija

Ugradena funkcija __syncthreads () se koristi
za sinhronizaciju niti na nivou bloka

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 79/146

Rasporedivanje i izvrsavanje niti (3)

o Na SM-ovima je implementirana
zero-overhead politika
rasporedivanja warp-ova

Broj warp-ova koji se izvrSava na SM-u
u jednom trenutku zavisi direktno ‘ S\}\V/IaTug(i:tr?égﬁ(ljeerd ‘
od arhitekture SM-a -

Raspolozivi za izvrsavanje su
samo oni warp-ovi kod kojih su
svi operandi dostupni za isvrSavanje
U narednoj instrukciji
Warp-ovi se biraju za izvrSavanje
na osnovu prioriteta

o Round robin + aging
Sve niti unutar warp-a izvrSavaju
istu instrukciju kada su izabrane

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 80/146

Rasporedivanije i izvrsavanje niti (4)

o Prosecno vreme pristupa globalnoj memoriji je
oko 200 ciklusa procesora

o Na novijim arhitekturama, 2 ciklusa su u proseku
potrebna da bi se instrukcija izvrsila u warp-u

Ako, u proseku, svaka Cetvrta instrukcija zahteva
pristup memoriji:

o Potrebno je najmanje 26 warp-ova na jednom SM-u
da bi se u potpunosti tolerisalo kasnjenje

02 *4*26=208

TB1, W1 stall————
—T1B2, W1 stal—}——TB3, W2 stall———
CoTBL TB2 | TB3 | TB3 | TB2 | TBL | TB1 | TB1L | TB3
. oowe o bwn fown fowe fwa | ow | owe | ws | wz
Instruction: | 1 i2:3i4i5i6|2i2]|1:2|1:2|8i4|7i8|1i2|1i2|[3i4
—Time-» TB = Thread Block, W = Warp

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 81/146

Kontrola toka (1)

o SM-ovi su procesori SIMD arhitekture

Dohvatanje i dekodovanje instrukcije se vrsi
zajednicki za viSe procesnih jedinica

Sve niti moraju izvrsavati isti kod u okviru warp-a

o Ovo se efikasno izvrSava ukoliko sve niti
u okviru warp-a slede istu putanju izvrsavanja
Sva /f-else uslovna grananja donose istu odluku
Sve petlje se izvrsavaju isti broj iteracija

o Problem prilikom izvrsavanja mogu biti warp-ovi
kod kojih postoji divergencija u kontroli toka
Branch (control) d/'vergence problem

Deo niti unutar warp-a izvrsava jednu putanju koda,
a deo niti izvrSava drugu putanju (kod /if-else)

Niti izvrsavaju razliCit broj iteracija petlji

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 82/146

Kontrola toka (2)

o Grananja se izvrSavaju tako sto sve niti izvrse
sve moguce putanje
IzvrSavanije niti se serijalizuje
Izvrsavaju se sve moguce putanje jedna po jedna
Alternativno, vrsi se predikatsko (spekulativno) izvrSavanje
o Instrukcije pod predikatom mora da ubaci prevodilac
o Zatim se u zavisnosti od uslova grananija,
odbacuju/ne upisuju rezultati putanja koje nisu aktivne
o Ovakav nacin izvrsavanja moze dovesti
do znacajnih usporenija!
Broj putanja moze biti veliki u zavisnosti
od ugnezdavanja kontrolnih struktura

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 83/146

Kontrola toka (3)

o Divergencija u kontroli toka nastaje kada je uslov
grananja ili petlje zavisan od indeksa niti u okviru bloka

o Primer jezgra sa divergencijom kontrole toka:
if (threadIdx.x > 10) { }

U ovom slucaju postoje dve putanje izvrSavanja niti
unutar bloka

Prvih 10 niti izvrSava jednu putanju, ostale niti drugu
Problem na nivou prvog warp-a u bloku

o Primer bez divergencije kontrole toka:
if (blockIdx.x > 2) { }

Odluka se donosi na nivou bloka
Svi warp-ovi u bloku izvrSavaju iste putanje

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 84/146

Kontrola toka (4)

o Primer sabiranja dva vektora od 10000 elemenata
Pokrece se 10 blokova sa po 1024 niti
Ukupno 10240 niti, suvisne niti ne izvrSavaju obradu

o Niti u blokovima 0-8 nece imati divergentne putanje
288 warp-ova Ce se izvrsavati na isti nacin

o U bloku 9 ce biti divergentnih putanja:

Prva 24 warp-a u bloku Ce se izvrsavati na isti nacin
kao u prethodnim blokovima

Warp 25 u bloku ¢e divergirati
o Pola niti ¢e izvrsavati obradu, druga polovina nece

Warp-ovi nakon toga Ce sadrzati niti koje ne izvrsavaju obradu

o Minimalan efekat na performanse izvrSavanja
Smanjuje je sa povecanjem velicine niza

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 85/146

Granularnost blokova (1)

o Dimenzije blokova niti treba pazljivo odabrati

o Primer mnozenja matrica

Na arhitekturi sa compute capability 7.0 (Volta)
sa 2048 niti po SM-u

o Da li treba koristiti 8x8, 16x16 ili 32x32 blokove?

o Za blok dimenzija 8x8, izvrsava se 64 niti po bloku
Maksimalno 2048 niti / 64 niti po bloku = 32 bloka niti
Svaki SM moze da prihvati 32 blokova na izvrsenje
Potpuna okupiranost
o Za hlok dimenzija 16x16
izvréava se 256 niti po bloku
Maksimalno 2048 niti / 256 niti po bloku = 8 blokova niti
o Za blok dimenzija, 32x32 N
ukupno bi se izvréavalo 1024 niti po bloku
Maksimalno 2048 niti / 1024 niti po bloku = 2 bloka niti

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 86/146

Granularnost blokova (2)

o Odluka o granularnosti blokova
dosta zavisi od arhitekture grafickog procesora

U sva tri slucaja iskoriSCava se pun kapacitet
pojedinacnog multiprocesora

o Osim ako potreba za drugim resursima ne onemoguci
izvrSavanje ovakve konfiguracije

Namece koriScenje profajlera i slicnih alatki
o Occupancy metrika

Odnos broja aktivnih warp-ova i
maksimalnog moguceg broja warp-ova koji mogu
teoretski da se izvrsavaju na jednom SM-u simultano

o Na starijim generacijama ne mora biti ovako!
Proveriti parametre u okviru dokumentacije

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 87/146

Granularnost blokova (3)

o Primer starije, Fermi arhitekture (cc 2.0)
1536 niti po SM-u, blok do 1024 niti, najvise 8 blokova po SM-u

o Za blok dimenzija 8x8, izvrsava se 64 niti po bloku
Maksimalno 1536 niti / 64 niti po bloku = 36 blokova niti
Svaki SM moze da prihvati samo 8 blokova na izvrsenje
o Samo 512 niti ¢e se izvrsavati na svakom SM-ul!

o Za blok dimenzija 16x16, izvrsava se 256 niti po bloku
Maksimalno 1536 niti / 256 niti po bloku = 6 blokova niti
Iskoriscava se pun kapacitet pojedinacnog multiprocesora

o Osim ako potreba za drugim resursima
ne onemoguci izvrSavanje ovakve konfiguracije

o Za blok dimenzija 32x32, izvrsava se 1024 niti po bloku
Maksimalno 1536 niti / 1024 niti po bloku = 1 blok niti
o Samo jedan blok se izvrsava na SM-u
Redukcija paralelizma od 1/3!

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 88/146

Hardverski pogled na CUDA memorije

o Hijerarhija memorijskih prostora
Registarski fajl, deljena memorija, globalna memorija

oo Global Memory «—1 1/0

Processing Unit

E Shared Reoist
| emry T

A
1

A ! !

+ T I

A 1 1
Control Unit

PC IR

Processor (SM)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 89/146

Alokacija registara (1)

o Svaki multiprocesor poseduje registarski fajl

Registri se dinamicki dodeljuju blokovima

koji se izvrSavaju na pojedinacnom multiprocesoru
o VeliCina registarskog fajla zavisi od arhitekture
o 8-64K 32-bitnih registara na svakom SM-u

Niti iz drugih blokova ne mogu pristupati
registrima dodeljenim jednom bloku niti

o Svaka niti pristupa samo registrima koji su joj dodeljeni
o Najvise 255 regisatara po niti
o Broj blokova koji se izvrsava na jednom SM-u
direktno zavisi od njihovih potreba za registrima

Sto moze dovesti do slabog iskoriééenja resursa

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 90/146

Alokacija registara (2)

o Pretpostavimo sledeci scenario:

Na raspolaganiju je 8K registarski fajl
o Na primer, na staroj G80 arhitekturi (cc1.1)

Jezgro se izvrsava u blokovima veliCine 16x16
Svaka nit koristi 10 registara

o Za izvrsavanje svakog bloka je potrebno
256 * 10 = 2560 registara

2560 * 3 = 7680 < 8192

Na SM-u se moze izvrSavati 3 bloka niti,
Sto se tiCe alokacije registara

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 91/146

Alokacija registara (3)

o Ukoliko se broj registara po svakoj niti poveca
samo za jedan:

Za izvrsavanje svakog bloka ce biti potrebno
256 * 11 = 2816 registara

02816 * 3 = 8448 > 8192

Samo dva bloka ¢e moci da se izvrSe na SM-u
02816 * 2 = 5632 << 8192
o Redukcija paralelizma skoro 1/3!

o Nije kriticno na novijim arhitekturama

Medutim, prevodilac svojim (ne)optimizacijama moze
da napravi problem

Kvalifikator _launch_bounds___ se moze iskoristiti
da ogranici broj registara po niti

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

92/146

Paralelna memorijska arhitektura (1)

o Memorijski propusni opseg (bandwidth) predstavlja
jedno od najvaznijih uskih grla
modernih visejezgarnih i mnogojezgarnih procesora
Kod paralelne masine, veliki broj niti pristupa memoriji
Zahteva se velika koli¢ina podataka za obradu

o Zahteva specificnu organizaciju DRAM podsistema
Pristup u transakciji (DRAM burst), memorijske banke i kanali

o Znacajan uticaj na performanse
Veoma izrazen problem kod grafickih procesora

About 1000 cells connected to each vertical line

decode

—’_‘_—‘— A very small capacitance that
I

stores a data bit

\/
ETF Beograd::Multiprocesorski sistemi::GPU ratunarstvo 1O SENse amps 93/146

Paralelna memorijska arhitektura (2)

o Memorija je preklopljena i podeljena
u memorijske banke na grafickom procesoru
Memory interleaving tehnika
Globalna i deljena memorija
Vrlo bitno za postizanje velikog propusnog opsega

o Svaka memorijska banka moze
da usluzi jedan zahtev u jednom ciklusu

Celokupna memorija moze simultano da usluzi
onoliko pristupa koliko ima memorijskin banki

o ViSe simultanih pristupa istoj banki -
dovodi do konflikta

Konfliktni pristupi se serijalizuju

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 94/146

Paralelna memorijska arhitektura (3)

o Memorija je podeljena u 32 banke Warp 32

Uzastopne 32-bitne reci se dodeljuju
uzastopnim memorijskim bankama % % g I\‘je'}‘r’rf’j‘r'y
o Pristup memoriji na CUDA se

kombinuje u transakcije
Najbolje performanse se dobijaju kada

sve niti unutar warp-a pristupaju hared
. .- . - are
uzastopnim memorijskim lokacijama ; ; Memory

o Tada nema konflikata

Konflikti su moguci
jedino unutar warp-a

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 95/146

Primeri pristupa memoriji (1)

o Nema konflikata o Nema konflikata
Linearno adresiranje Slucajan pristup memoriji
stride = 1

~ aYs 0
N 3

Bank 31 B3

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 96/146

Primeri pristupa memoriji (2)

o Dvostruki konflikt o 8-struki konflikt
Linearno adresiranje Linearno adresiranje
stride = 2 stride = 8
U X8 U

A . X8
[]
[]

Bank 31 Bank 31

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 97/146

Pristup memoriji u transakcijama (1)

o Najbolje performanse se dobijaju
kada sve niti unutar warp-a
pristupaju uzastopnim memorijskim lokacijama
Spojeni/sjedinjeni pristup memoriji (memory coalescing)
Posledica pristupa podacima u burst-u (transakciji)
o Ceo adresni prostor je podeljen u burst sekcije

Kada god se pristupi lokaciji, sve ostale lokacije
u okviru iste sekcije se takode dostavljaju

U praksi, adresni prostor je reda velicine 4GB,
a burst sekcije su velicine 128 bajtova ili vise

Burst section Burst section Burst section Burst section

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

98/146

Pristup memoriji u transakcijama (2)

o Pristup u jednoj transakciji se desava kada:
Sve niti u okviru warp-a izvrSavaju /oad instrukciju

Ukoliko pristupi svim lokacijama upadaju
u okviru iste burst sekcije

Tada ce biti generisan samo jedan zahtev DRAM memoriji
Pristup Ce biti potpuno sjedinjen (fully coalesced)
o U suprotnom, bice generisano vise transakcija

Coalesced Loads Coalesced Loads

TO Tl TZ T3 TO Tl T2 T3

Burst section Burst section Burst section Burst section
ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

9 10 11 12 13 14 15

99/146

Pristup memoriji u transakcijama (3)

o Pristup u vise transakciji se deSava kada:
Niti u okviru warp-a izvrSavaju /oad instrukciju
Pristupi lokacijama se protezu preko granica burst sekcija
Bice generisano vise zahteva DRAM memoriji
Pristup nije sjedinjen (non-coalesced)

o Neki bajtovi kojima je pristupljeno e biti odbaceni
Nece biti koris¢eni od strane niti

Un-coalesced Loads Un-coalesced Loads
To T, T, T, T, T, T,

O| 1|23 8 9 10 11 12 13 14 15

Burst section Burst section Burst section Burst section
ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 100/146

Pristup memoriji u transakcijama (4)

o Moguca okvirna provera
da li je pristup sjedinjen u okviru warp-a
o Adresni izraz za pristup nizu A treba

da bude oblika:
A[expr + threadIdx.x]

Gde je expr izraz sa Clanovima
Koji su nezavisni od threadIdx.x

o Tada niti pristupaju sukcesivnhim lokacijama

Pristup Ce biti potpuno sjedinjen ukoliko niti pristupaju
lokacijama iz istog DRAM burst-a

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 101/146

Pristup memoriji u transakcijama —
mnozenje matrica (1)

o Primer mnozenja matrica prikazuje oba nacina pristupa
Pristup vrstama matrice M od strane niti iz iste vrste
o Niti pristupaju istom elementu u jednom trenutku

Pristup kolonama matrice N od strane niti iz iste vrste
o Niti pristupaju susednim elementima u jednom trenutku

Nema spajanja Ima spajanja
(non-coalesced) (coalesced)
!
Nit 1 —
Nit 2
Md [row*width+i] Nd[i*width+col]

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 102/146

Smestanje matrica u memoriju
(podsetnik)

o Matrice se na programskom jeziku C
podrazumevano smestaju po vrstama

Matrica se na uredaju smesta linearizovana

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 103/146

Pristup memoriji u transakcijama —
mnozenje matrica (2)

o Pristup vrstama matrice Md

o Ne postoji kombinovanje u transakciju:
Niti ne pristupaju
uzastopnim lokacijama u jednom trenutku
o Non-coalesced access

Trenutak 2
A 1 A A
Tllenutak 1
Niti: | T, T, T, T,

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 104/146

Pristup memoriji u transakcijama —
mnozenje matrica (3)

o Pristup kolonama matrice Nd

o Postoji kombinovanje u transakciju:
Niti pristupaju
uzastopnim lokacijama u svakom trenutku

o Coalesced access Smer pristupa ENEEREN RN CERENES
u kodu jezgra

Trenutak 1 Trenutak 2 T, T, T, T,
Niti: (T, T, T T,||T; T, T; T,

HARRNARR

NO,O

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 105/146

Konstantna memorija

o Region konstantne memorije se nalazi
u DRAM-u (64KB veliCine)

Medutim, pristup konstantnoj memoriji je
keSiran radi brzeg pristupa

Svaki SM ima svoj L1 kes

o Pojedinacna vrednost
iz konstantne memorije moze biti
objavljena svim nitima unutar warp-a
Broadcast mehanizam
Efikasan nacin za pristup vrednosti koja je
zajednicka za sve niti unutar bloka
o Pogodno koristiti kada god pristup
podacima podrazumeva samo citanje

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

1$
L1

\v

Multithreaded
Instruction Buffer

v

E R Shared
F Mem

A v v

Operand Select

v v

MAD SFU

106/146

Deljena memorija (1)

o Za efikasno deljenje podataka na nivou bloka niti
moze se Koristiti deljena memorija
Omogucava veliku ustedu memorijskog propusnog opsega

Nalazi se na Cipu svakog SM-a (on-chijp memory)
o Kombinovani L1 kes i deljena memorija

o Efikasan pristup, 3-4 ciklusa procesora

Shared Shared

memory memaory

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 107/146

Deljena memorija (2)

o Deljena memorija se moze smatrati S
kao neka vrsta kesa !
upravljanog od strane korisnika
User managed cache/scratchpad v
o Svaki SM ima ograni¢enu veli¢inu A
deljene memorije WOperand i
Kapacitet zavisan od arhitekture GPU
Starije arhitekture 16-48KB M‘;D SZU
Novije arhitekture 64-228KB I
o Deljena memorija je podeljena u y

32 banke sastavljenih od 32-bitnih reci
Niti iz istog bloka mogu slobodno da Citaju i piSu

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 108/146

Deljena memorija (3)

o Pristup deljenoj memoriji ¢e biti brz skoro
kao pristup registrima, ukoliko nema konflikata
prilikom pristupa memorijskim bankama
o Brz pristup deljenoj memoriji:
Ako sve niti iz warp-a pristupaju razli¢itim memorijskim bankama,
nema konflikta
Ako sve niti iz warp-a pristupaju istoj adresi, nema konflikta
o Koristi se broadcast mehanizam
o Spor pristup deljenoj memoriji:
Konlikt prilikom pristupa se desava kada vise niti iz warp-a
pristupaju istoj memorijskoj banci
o Ne nuzno i istoj lokaciji
Pristupi se tada serijalizuju

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 109/146

Deljena memorija (4)

o Deljena memorija se unutar jezgra zadaje kljucnom recju
shared

o Moze se zadati eksplicitno (staticki)
__shared float DynamicSharedMem[BLOCK SIZE] ;
o Moze se specificirati prilikom poziva jezgra
unutar izvrsne konfiguracije

Takva memorija se alocira u promenljive deklarisane kao
extern @ shared float DynamicSharedMem|[] ;

Primer pozivanja takvog jezgra:
__global void KernelFunc(...);

size t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 110/146

TipiCna strategija programiranja (1)

o Globalna memorija se nalazi u memoriji uredaja
(DRAM)
Mnogo sporiji pristup nego kod deljene memorije
o Deljena memorija se upotrebljava
kako bi se smanijili efekti
memorijskog propusnog opsedga na performanse

o UobiCajena strategija za sprovodenje izraCunavanja
podrazumeva podelu podataka na podblokove (¢//es)

Fokus rada niti se prebacuje na manje podblokove podataka
u jednom trenutku vremena

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 111/146

TipiCna strategija programiranja (2)

o Tiling tehnika koristi se prednost
brze deljene memorije

Podaci se dele na podblokove koji mogu
da stanu u deljenu memoriju

IzvrSavanje se deli na faze

o Svaki podblok se obraduje jednim blokom niti

Podblok se ucitava iz globalne u deljenu memoriju
od strane niti iz bloka

o Kako bi se omogucilo Citanje u transakciji
Vrsi se obrada podbloka u deljenoj memoriji
Svaka nit moze efikasno da pristupi svakom podatku iz podbloka
Rezultati se kopiraju nazad iz deljene memorije u globalnu
Prelazi se na obradu narednog podbloka

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 112/146

TipiCna strategija programiranja (3)

o Bitno je uskladiti rad niti po fazama

Moze zahtevati koriscenje sinhornizacije na barijeri
Koristi se API funkcija __syncthreads ()

Nit 0
Nit 1
Nit 2
Nit 3
Nit 4

Nit N-3

Nit N-2
Nit N-1

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 113/146

Sinhronizacija na barijeri

o Sinhronizacija na barijeri je moguca samo na nivou bloka niti
Moze biti pozvana samo unutar jezgra

o Jednom kada sve niti dostignu sinhronizacionu tacku,
izvrSavanje se nastavlja normalno

o Poziv treba koristiti da bi se izbegli
RAW / WAR / WAW hazardi pristupa deljenoj ili globalnoj memoriji

o Koristi se Cesto u tiled algoritmima:
Obezbeduje da svi elementi podbloka budu ucitani

Obezbeduje da svi elementi podbloka budu konzumirani
pre naredne faze algoritma

o Mora se pazljivo koristiti unutar uslovnih grananja
Sve niti unutar bloka moraju izvrsavati istu granu

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 114/146

Mnozenje matrica — podsetnik (1)

o Jezgro:

__global void MatrixMulKernel
(float* Md, float* Nd, float* Pd, int Width) {

// Calculate the row index of the Pd element and M
int Row = blockIdx.y * TILE WIDTH + threadIdx.y;
// Calculate the column index of Pd and N

int Col = blockIdx.x * TILE WIDTH + threadIdx.x;

float Pvalue = 0O;
// Each thread computes one element of the block submatrix
for (int k = 0; k < Width; ++k)

Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];

Pd[Row * Width + Col] = Pvalue;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 115/146

Mnozenje matrica — podsetnik (2)

o Svaka nit iz iste vrste ¢e pristupati WIDTH puta
elementima matrica M i N

Postoje suvisni, redundantni pristupi elementima,
kako na nivou vrste matrice M, tako i na nivou kolone matrice N

Globalna memorija

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 116/146

Mnozenje matrica — deljena memorija (1)

o Ideja je da se matrice podele na podblokove
Niti ¢e ucitavati jedan po jedan podblok i obradivati ih

Globalna memorija

Deljena memorija

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 117/146

Mnozenje matrica — deljena memorija (2)

o Svaki ulazni element ¢e biti ucitan
WIDTH puta

Svaka nit ¢e pristupati WIDTH puta
elementima matrica M i N
o Ideja je da se svaki element ucita
u deljenu memorlju

Vise niti ¢e koristiti lokalnu verziju podatka
da ustede propusni opseg memorije v

A

tx

»
»
v

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 118/146

Mnozenje matrica —
deljena memorija (3)

o Izvrsavanje jezgra
se deli na faze

Pristup podacima u jednoj fazi se
odvija na nivou jednog podbloka
matrica Md i Nd

S

SGSS

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

v
119/146

Mnozenje matrica — deljena memorija (4)

o Primer izraCunavanja jednog podbloka
rezultujuce matrice
Matrica dimenzija 4x4
Podblokovi dimenzija 2x2

Vid, M, M Md, [TPORir o

I dO,lMdl,lMd2,lMd3,

sz/o Pd3,0

; sz,l Pd?’,l

Pd0,2 Pdl,z sz/z Pd3,2

Pd0,3 Pd1,3 Pd2,3 Pd3,3

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 120/146

Mnozenje matrica — deljena memorija (5)

o Svaki element matrica Md i Nd se koristi tacno dva puta
prilikom izracunavanja podbloka matrice Pd

Redosled
pristupa

I:)0,0 Pl,O I:)0,1 I:)1,1
thread, , thread, , thread, , thread, ;
IVIO,O * NO,O MO,O * MO,l * NO,O MO,l *@
@ Nos [Nuw [M Noy My, * Ny
Mz,o * No,z Mz,o * N1,2 M2,1 * No,z M2,1 * N1,2
M3,O * NO,3 M3,O * N1,3 IV|3,1 * N0,3 IV|3,1 * N1,3

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

121/146

Mnozenje matrica — deljena memorija (6)

o IzraCunavanje matrice se deli na faze

Najpre se podblokovi matrica Md i Nd
ucitaju u deljenu memoriju

Zatim se izraCuna deo podbloka

matrice Pd
Svaka faza koristi
) d, Md, Md,
redan deo TEN Y0 T I R,
V[do,lMdl,j V[dz,1Md3,i : PdZ,l Pd3,1
o|Pd,,[Pd;,
5|Pd;5Pd; 5

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

122/146

Mnozenje matrica — deljena memorija (7)

Faza 1 Faza 2
Too |Mdgo |Ndgo |PValuggo += | Md,o |Ndg, |PValugy, +=
l l MdSO,O*NdSO,O + l l MdSO,O*NdSO,O +
MdSO,O NdSO 0 Mdsl,O*NdSO,l MdSO 0 NdSO 0 Mdsl,O*NdSO,l
T1,0 Mdlro Nd Pvaluel,o += Md3,o Nd1,2 PVaIueLO +=
l ! M*Ndsm Tl ! Mds, o*Nds; o +
Mdsl,O Ndsl 0 Mdsllo*Ndslll MdSl 0 NdSl 0 Mdsllo*Ndslll
To1 |Mdgy | Ndg, dValue,; += |Md,; |[Ndy; |PdValugy, +=
|] So,1*NdSg o+ | | | Mds, 1¥Nds; o +
Mdsy: | Nds, , 1*Ndsq 4 Mds,,, | Nds, Mds, ;*Nds, ;
Ti1 |Mdy; | Ndy, Pdvah%; += |Md;, |Nd,; |Pdvalue +=
Mdsl,l Ndsl . MdSlll*Ndslll Md51 . NdSl . Mdsl,l*Ndsl,l

ETF Beograd::Multiprocesorski sistemi::GPU MEGHII&vo

123/146

Mnozenje matrica — deljena memorija (8)

o Kompletan kod:

// Setup the execution configuration
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH) ;
dim3 dimGrid (Width / TILE WIDTH, Width / TILE_WIDTH) ;

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>> (Md, Nd, Pd, Width);

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 124/146

Mnozenje matrica — deljena memorija (9)

__global void MatrixMulKernel
(float* Md, float* Nd, float* Pd, int Width) {

__shared float Mds[TILE WIDTH] [TILE WIDTH];
___shared float Nds[TILE WIDTH] [TILE WIDTH];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadldx.y;
//Identify the row and column of the

//Pd element to work on

int Row = by * TILE WIDTH + ty;

int Col = bx * TILE WIDTH + tx;

float Pvalue = 0;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 125/146

Mnozenje matrica — deljena memorija
(10)

// Loop over the Md and Nd tiles required to compute
//the Pd element
for (int m = 0; m < Width/TILE WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles
// into shared memory
Mds[ty] [tx] = Md[Row*Width + (m*TILE WIDTH + tx)];
Nds[ty] [tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
__syncthreads() ;

for (int k = 0; k < TILE WIDTH; ++k)
Pvalue += Mds|[ty] [k] * Nds[k][tx]:
__syncthreads() ;

}
Pd[Row*Width+Col] = Pvalue;

}

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 126/146

Mnozenje matrica —
deljena memorija (11)

o Svaki blok niti racuna jednu
kvadratnu podmatricu Pd,
veliCine TILE_ WIDTH

o Svaka nit racuna jedan element
podmatrice Pd,,

by

m
by
I8
—
Y

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

v
127/146

Mnozenje matrica — performanse (1)

o Svaki blok niti treba da ima veliki broj niti
Za TILE_WIDTH = 16, bice 16 x 16 = 256 niti po bloku
Za TILE_WIDTH = 32, bice 32 x 32 = 1024 niti po bloku

o Za velicinu bloka TILE_WIDTH = 16

Svaki blok niti radi
2 x 256 = 512 pristupa (Citanja) iz globalne memorije

Zatim se vrsi 256 x (2 x 16) = 8192 operacija
o Za veliCinu bloka TILE_ WIDTH = 32

Svaki blok niti radi
2 x 1024 = 2048 pristupa (Citanja) iz globalne memorije

Zatim se vrSi 1024 x (2 x 32) = 65536 operacija

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 128/146

Mnozenje matrica — performanse (2)

o Koris¢enjem deljene memorije,
memorijski propusni opseg vise nije limitirajuci faktor
Broja racunskih operacija mnogo veci od broja pristupa memoriji
8192 >> 512 TILE_WIDTH = 16
65536 >> 2048 TILE_WIDTH = 32
o Kapacitet deljene memorije moze biti ogranicavajuci
faktor kod tiled algoritama

Za TILE_WIDTH = 16, svaki blok niti koristi 2 x 256 x 4B = 2KB
deljene memorije

Za TILE_WIDTH = 32, svaki blok niti koristi 2 x 1024 x 4B = 8KB
deljene memorije

Moze ogranicCiti broj blokova koji se izvrSavaju na SM-u

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 129/146

Mnozenje matrica — performanse (3)

100

90

80

70

60

50

40

GFLOPS

30

20

10

not tiled

tiled
only

tiled &
unrolled

4 x4 tiles

tiled
only

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

tiled &
unrolled

8x8 tiles

T
£5 | =
2
12x12 tiles

unrolled

T >
g5 | @
2
16x16 tiles

unrolled

130/146

Atomicne operacije (1)

o Postoje situacije kod kojih je potrebno obezbediti atomicnost
operacija nad globalnom memorijom
Kako bi se izbegli hazardi podataka (data race)
Npr. inkrementiranje globalnog brojaca

o AtomicCne operacije omogucavaju izvrsavanje
read-modify-write operacije nad memorijskom lokacijom
Podrzano od strane hardverskih instrukcija

o Hardverski se obezbeduje da nijedna druga nit ne moze
da pristupi lokaciji dok se trenutna operacija ne zavrsi

Druge niti koje pokusavaju atomi¢nu operaciju Ce biti blokirane
u redu za Cekanje

AtomiCne operacije se izvrsavaju serijalizovano nad istom lokacijom

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 131/146

Atomicne operacije (2)

o AtomiCne operacije se izvrsavaju pozivanjem
ugradenih (intrinzickih) funkcija (intrinsics)
u okviru jezgra

Atomicno sabiranje, oduzimanje
Inkrementiranje, dekrementiranje
Minimum, maksimum

Razmena vrednosti lokacija (exchange),
CAS (compare and swap)

o Mogu se iskoristiti za ogranicenu
globalnu sinhronizaciju i zastitu deljenih objekata

o Zavisno od arhitekture grafickog procesora
Compute capability definise dostupne operacije

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 132/146

Atomicne operacije (3)

o Familija atomic add intrinsickih funkcija
int atomchdd(lnt* address, int wval);

Cita 32-bitnu rec sa stare lokacije address
u globalnoj ili deljenoj memoriji

Racuna old + val
Smesta rezultat u memoriju na istu adresu
Funkcija vraca staru vrednost o1d
o Druge funkciji u familiji:
Unsigned 32-bit integer atomic add

unsigned int atomicAdd (unsigned int*
address,unsigned int wval);

Unsigned 64-bit integer atomic add

unsigned long long int atomicAdd (unsigned long
long int* address, unsigned long long int wval) ;

Single-precision floating-point atomic add
float atomicAdd (float* address, float val);

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 133/146

Dodatne CUDA API funkcionalnosti

o CUDA izvrsni (runtime) API pruza razne mogucnosti
za upravljanje uredajem i izvrsavanjem programa

o Postoje funkcije za:
Upravljanje uredajem

o Sa podrskom za vise grafickih procesora na jednom sistemu
(Multi-GPU)

Upravljanje memorijom
Upravljanje teksturama
Saradnju sa eksternim (grafickim) API-jima
Upravljanje greskama
Upravljanje dogadajima
o CUDA sistem se automatski inicijalizuje
kada se prvi put pozove neka funkcionalnost

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 134/146

Upravljanje uredajem

o Upravljanje uredajem je omoguceno putem
odgovarajucih funkcija

Dohvatanje ukupnog broja uredaja u sistemu
cudaGetDeviceCount ()

Dohvatanje karakteristika uredaja
cudaGetDeviceProperties ()

o Izbor uredaja:

Eksplicitno postavljanje aktivhog uredaja
cudaSetDevice ()

Izbor uredaja koji najbolje zadovoljava zadate uslove
cudaChooseDevice ()

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 135/146

Upravljanje memorijom (1)

o Dva tipa memorijskih objekata
Linearna memorija
o Pristupa joj se pomocu 32-bitnih pokazivaca
CUDA nizovi

o Specificni, netransparentni objekti koji se koriste za smestanje i
Citanje tekstura

o Alokacija memorije na uredaju
Linearna memorija (1D)
cudaMalloc (), cudaFree ()

Linearna memorija sa padding-om (2D, 3D)
cudaMallocPitch (), cudaMalloc3D

o Parametar pitch govori o nacinu poravnanja nizova u memoriji
kako bi se zadovoljili uslovi sa kombinovani/sjedinjeni pristup

Alokacija CUDA nizova
cudaMallocArray (), cudaFreeArray ()

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 136/146

Upravljanje memorijom (2)

o Alokacija page-locked memorije
Brzi pristup kada se ne dozvoljava zamena stranica
cudaHostAlloc (), cudaMallocHost (), cudaFreeHost ()
o Memorijski transferi sa domacina na uredaj,
uredaja na domacina i unutar samog uredaja

Sinhorni i asinhroni transferi
o Asinhrone funkcije nastavak Async u imenu

cudaMemcpy (), cudaMemcpy2D (), cudaMemcpyToArray (),
cudaMemcpyFromArray (), cudaMemcpyToSymbol (),
cudaMemcpyFromSymbol ()

o Dohvatanje adrese simbola
cudaGetSymbolAddress ()

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 137/146

Upravljanje teksturama i povrsima

o 2D prostorni keSevi
Teksture se samo Citaju, po povrSima moze i da se pise

o Vezuju se za posebne objekte
Ti objekti se zatim koriste u okviru jezgra
CUDA nizove (optimizovan pristup)
1D linearnu memoriju (uz ogranicenja)

Funkcije za rad sa teksturama:
cudaBindTexture (), cudaUnbindTexture ()

o Teksturama se pristupa pomocu posebne hardverske
jedinice i ugradenih funkcija jezgra
tex1D (), tex2D (), tex3D()

float u, v; // Coordinates
floatd4 value = tex2D (myTexRef, u, v);

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 138/146

Saradnja sa drugim API

o CUDA moze da saraduje
sa OpenGL, DirectX (Direct3D) i Vulcan API

o Baferi iz spoljnih API-ja se mogu

direktno mapirati u CUDA adresni prostor
Razlicite rucke, tipicno zavisne od OS-a i API-ja
Podaci se mogu Citati i obradivati
Podaci se mogu upisati i proslediti dalje na obradu
Moze se vrsiti sinhronizacija nad ovim objektima

Funkcije kao sto su:
cudaExternalMemoryGetMappedBuffer () ;
cudaExternalMemoryGetMappedMipmappedArray () ;

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 139/146

Upravljanje greSkama

o Sve funkcije koje su deo CUDA runtime vracaju strukturu
cudaError t Sa opisom greske

Postoji oko 25 razliCitih kodova greSaka
o Posledniji kod greske koji je proizveo neki od poziva se

moze dobiti sa:
cudaGetLastError ()
Greske asinhronih poziva se dohvataju ovom funkcijom ili
prilikom poziva neke druge CUDA funkcije
o String koji opisuje odgovarajucu gresku
se moze dobiti pozivom:
cudaGetErrorString ()

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 140/146

Upravljanje dogadajima

o CUDA podrzava koncept dogadaja
Koriste se za pracenje napretka asinhronih dogadaja

Dogadaj se belezi onda kada se izvrse
sve komande zadate tokom komandi

Dogadaji se predstavalju tipom cudaEvent t,

a koriste se funkcije:
cudaEventCreate (), cudaEventRecord (),

cudaEventSynchronize (), cudaEventElapsedTime (),
cudaEventDestroy ()

o Vreme na uredaju se moze meriti pomocu funkcija
koje rade sa CUDA dogadajima
Koriste se precizni GPU tajmeri

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 141/146

Konkurentno izvrSavanje

o Kako bi se omogucilo konkurentno izvrSavanje i na
domacinu i na uredaju, odredeni broj poziva je asinhron

Pozivi jezgru
Memorijski transferi unutar uredaja
Memorijski transferi oznaCeni Async funkcijama
Po potrebi, sinhronizacija se moze obaviti funkcijom:
cudaDeviceSynchronize ()

o Takode, konkurentnost se moze postici:

Preklapanjem memorijskih transfera i izvrSavanja jezgra
koriscenjem koncepta tokova (streams)

Paralelnim izvrSavanjem jezgara na uredajima
koji to dozvoljavaju (cc >= 2.0)

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 142/146

Dinamicki paralelizam

o Graficki procesori sa cc >= 3.5 omogucavaju
da se u okviru jednog jezgra omoguce pozivi drugim jezgrima
Dinamicki paralelizam
Mogucnost da jezgro kreira novi posao direktno na GPU

o Dinamicki paralelizam omogucava da se smanji potreba
za transferom kontrole toka izmedu domacina i uredaja

IzvrSna konfiguracija novog poziva nekom jezgru moze
da se zada na GPU

Omogucena je sinhronizacija izmedu jezgara — roditelja i potomaka
o Pogodno za probleme koji iskazuju:

Ugnezdeni i hijerarhijski paralelizam

Potrebu za rekurzijom

Iregularnu strukturu petlji

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 143/146

CUDA biblioteke (1)

o CUBLAS

CUDA Basic Linear Algebra Subprograms (BLAS)
Implementacija BLAS standarda na CUDA
Kompatibilna sa FORTRAN aplikacijama
UkljuCuje se zaglavljem cublas.h

o CUFFT
CUDA Fast Fourier Transform (FFT)
Ukljucuje implementaciju najvaznijih i najkoriscenijih CUDA
algoritama
UkljuCuje se zaglavljem cufft.h

o CURAND

Implementira generisanje slucajnih brojeva na uredaju
UkljuCuje se zaglavljem curand.h i curand kernel.h

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 144/146

CUDA biblioteke (2)

o NVIDIA Performance Primitives (NPP)

Implementira veliki broj gotovih algoritama
za obradu slike i video signala

o CUSPARSE

Implementira algoritme za rad sa retkim matricama

o Thrust biblioteka

Thrust je biblioteka CUDA Sablona za C++ bazirana
na Standard Template Library (STL).

Thrust dozvoljavam programeru da implementira HPC aplikacije
sa minimalnim programerskim naporom

Implementiran je API visokog nivoa
o Memorijski transferi su sakriveni od korisnika i sl.

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo 145/146

Literatura

O

Kaufmann

David Kirk, Wen-mei Hwu, Programming Massively
Parallel Processors: A Hands on Approach, Morgan

o NVIDIA CUDA C Programming Guide 13.1, 2026.
o NVIDIA GPU Teaching Kit 2025

O
O
O

nttp://en.wikipedia.org/wiki/G

Razni materijali i dokumentacija sa NVIDIA sajta

PGPU

nttp://en.wikipedia.org/wiki/C

UDA

ETF Beograd::Multiprocesorski sistemi::GPU racunarstvo

146/146

http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/CUDA

