Multiprocesorski sistemi
Domaci zadatak 2
Skolska godina 2025/2026
CUDA
(10 poena)

Uvod

Cilj zadatka je da studente obuci da samostalno razvijaju osnovne CUDA programe za izvrSavanje na
grafickom procesoru.

Domaci zadaci se rade samostalno ili u paru. ReSenja domacih zadataka i izvestaj svaki student predaje
samostalno u svoj svn repozitorijum.

PodesSavanje okruzenja

Detaljna uputstva za instaliranje, podesavanje i1 prvo izvrSavanje CUDA programa se mogu naci na adresi
http://developer.nvidia.com/nvidia-gpu-computing-documentation. Po tom uputstvu podesiti okruzenje za
razvoj 1 kontrolisano izvrSavanje (engl. debugging) CUDA programa na lokalnom rac¢unaru. Alternativno,
koristiti CUDA (nvec) na raCunaru rtidev5.etf.rs. Prevodilac se nalazi u direktorijumu:
/usr/local/cuda/bin/.

Izvestaj

Uz predati domaci zadatak (izvorne kodove) treba napisati i priloziti kratak izvestaj o izvrSenoj
paralelizaciji i dobijenim ubrzanjima u odnosu na sekvencijalnu verziju koda. Za svaki reSeni zadatak treba
kratko opisati uocena mesta koja je moguce paralelizovati i nacin paralelizacije. Takode, potrebno je dati
logove izvrSenog koda za sve test primere koji se izvrSavaju i1 nalaze se u run datoteci i nacrtati grafike
ubrzanja u odnosu na sekvencijalnu verziju. Na graficima je potrebno dati i rezultate poredenja razlicitih
nacina paralelizacije za isti broj niti, ukoliko postoje takvi zahtevi u okviru teksta zadatka. Sablon za pisanje
izvestaja se nalazi u okviru sekcije za domace zadatke predmetnog sajta.

Zadaci

Svi programi treba da koriste GPU za bilo koju obradu. Smatrati da je broj GPU niti na nivou jednog bloka
niti odreden konstantom NUM_OF GPU_THREADS, (ija je vrednost za sve zadatke 1024. Obezbediti da
niti koje u nekom koraku nemaju posla na korektan nacin stignu do kraja tela CUDA jezgra.

Kod zadataka gde je to zahtevano, korisnik zadaje samo dimenzije nizova/matrica, a sve potrebne ulazne
podatke generisati u operativnoj memoriji uz pomoc¢ generatora slucajnih brojeva iz biblioteke jezika C, a
zatim prebaciti u GPU memoriju. Generisani brojevi treba da budu odgovarajuceg tipa u opsegu od ~MAX
do +MAX, gde MAX ima vrednost 1024. Za sve zadatke je potrebno napisati ili iskoristiti zadatu
sekvencijalnu (CPU) implementaciju odgovaraju¢eg problema koja ¢e biti koriS¢ena kao referentna (gold)
implementacija prilikom testiranja programa.

Svaki program treba da:

GeneriSe ili koristi ve¢ obezbedene ulazne test primere.

- Kopira test primere u GPU memoriju 1 rezultat iz GPU memorije.

- Izvr$i CUDA jezgro nad zadatim test primerom.

- Izvrsi sekvencijalnu implementaciju nad zadatim test primerom.

- IspiSe vreme izvrSavanja CUDA i sekvencijalne implementacije problema.

- Uporedi rezultat CUDA 1 sekvencijalne implementacije problema.
IspiSe "Test PASSED"ili"Test FAILED" uzavisnosti da li se rezultat izvrSavanja MPI implementacije
podudara sa rezultatom izvrSavanja sekvencijalne implementacije.

http://developer.nvidia.com/nvidia-gpu-computing-documentation

Kod zadataka koji koriste realne tipove (float, double) tolerisati maksimalno odsupanje od
+ACCURACY prilikom poredenja rezultata CPU 1 GPU implementacije. Smatrati da konstanta ACCURACY
ima vrednost 0.01. Prilikom reSavanja zadataka voditi raCuna da se postigne maksimalni mogu¢i
paralelizam. Dozvoljeno je ograniceno preuredivanje dostupnih sekvencijalnih implementacija prilikom
paralelizacije. Ukoliko u nekom zadatku nesto nije dovoljno precizno definisano, student treba da
uvede razumnu pretpostavku i da nastavi da izgraduje svoje reSenje na temeljima uvedene
pretpostavke.

Dostupne sekvencijalne implementacije se nalaze u arhivi koje se mogu preuzeti na adresi sa predmetnog
sajta. Na rtidev5.etf.rs raCunaru arhiva se moze dohvatiti i raspakovati slede¢im komandama:

Dohvatanje: wget http://mups.etf.rs/dz/2025-2026/MPS_DZ_2025_2026.zip
Raspakivanje: unzip MPS_DZ_2025_2026.zip

1. [3] Paralelizovati program koji formira sliku tacaka koje pripadaju Julia skupu tacaka
(https://en.wikipedia.org/wiki/Julia_set). Neka se posmatra skup tacaka (x, y) u na pravougaonom
domenu x, y € [-1,5, 1.5] i neka vaZi z = x+yi. Julia skup je skup tacaka za koji iteracija z = z° + ¢ ne
divergira za odredene zadate pocetne uslove. U zadatom programu pocetni uslov odgovara c=-
0.8+0.156i. Ukoliko u bilo kom trenutku vazi /000 < |z|, smatra se da tacka z ne pripada Julia skupu.
Program formira sliku u 7arga (.tga) formatu koja se moze otvoriti u nekom od namenskih pregledaca
slika. Program se nalazi u datoteci julia.c u arhivi koja je priloZena uz ovaj dokument, dok se
primeri izlaznih datoteka nalaze u direktorijumu output.

Program testirati sa parametrima koji su dati u run skripti.

2. [3] Paralelizovati program koji vrsi izraCunavanje 3D Poasonove jednacine kori§¢enjem Feyman-Kac
algoritma. Algoritam stohasti¢ki racuna resenje parcijalne diferencijalne jednacine krenuvsi N puta iz
razlicitih tac¢aka domena. Tacke se kre¢u po nasumi¢nim putanjama i prilikom izlaska iz granica
domena kretanje se zaustavlja racunajuéi duzinu puta do izlaska. Proces se ponavlja za svih N tacaka i
kona¢no aproksimira reSenje jednacine. Program se nalazi u datoteci feyman.c u arhivi koja je
priloZena uz ovaj dokument.

Program testirati sa parametrima koji su dati u run skripti.

3. [4] Paralelizovati jednostavan program koji se bavi molekularnom dinamikom. Simulacija se bavi
esticama (molekulima) i njihovom medusobnom interakcijom u funkciji distance. Cestice nisu
prostorno ograni¢ene, a algoritam iterativno reSava sistem diferencijalnih jednacina u diskretnim
vremenskim koracima. Na osnovu zadate pozicije 1 brzine Cestice u jednom trenutku, algoritam
odreduje poziciju 1 brzinu u narednom trenutku. Kod koji treba paralelizovati se nalazi u datotecimd. c
u arhivi koja je priloZena uz ovaj dokument. Analizirati dati kod 1 obratiti paznju na funkciju compute
za izraCunavanje sila i energija. Ukoliko je potrebno medusobno iskljucenje prilikom paralelizacije
programa, koristiti dostupne OpenMP sinhornizacione direktive. Obratiti paZznju na efikasnost
paralelizacije.

Program testirati sa parametrima koji su dati u run skripti.

https://en.wikipedia.org/wiki/Julia_set
https://en.wikipedia.org/wiki/Poisson%27s_equation
https://en.wikipedia.org/wiki/Feynman%E2%80%93Kac_formula

