
Multiprocesorski sistemi
Domaći zadatak 2

Školska godina 2025/2026
CUDA

(10 poena)

Uvod
Cilj zadatka je da studente obuči da samostalno razvijaju osnovne CUDA programe za izvršavanje na

grafičkom procesoru.

Domaći zadaci se rade samostalno ili u paru. Rešenja domaćih zadataka i izveštaj svaki student predaje

samostalno u svoj svn repozitorijum.

Podešavanje okruženja
Detaljna uputstva za instaliranje, podešavanje i prvo izvršavanje CUDA programa se mogu naći na adresi

http://developer.nvidia.com/nvidia-gpu-computing-documentation. Po tom uputstvu podesiti okruženje za

razvoj i kontrolisano izvršavanje (engl. debugging) CUDA programa na lokalnom računaru. Alternativno,

koristiti CUDA (nvcc) na računaru rtidev5.etf.rs. Prevodilac se nalazi u direktorijumu:

/usr/local/cuda/bin/.

Izveštaj
Uz predati domaći zadatak (izvorne kodove) treba napisati i priložiti kratak izveštaj o izvršenoj

paralelizaciji i dobijenim ubrzanjima u odnosu na sekvencijalnu verziju koda. Za svaki rešeni zadatak treba

kratko opisati uočena mesta koja je moguće paralelizovati i način paralelizacije. Takođe, potrebno je dati

logove izvršenog koda za sve test primere koji se izvršavaju i nalaze se u run datoteci i nacrtati grafike

ubrzanja u odnosu na sekvencijalnu verziju. Na graficima je potrebno dati i rezultate poređenja različitih

načina paralelizacije za isti broj niti, ukoliko postoje takvi zahtevi u okviru teksta zadatka. Šablon za pisanje

izveštaja se nalazi u okviru sekcije za domaće zadatke predmetnog sajta.

Zadaci
Svi programi treba da koriste GPU za bilo koju obradu. Smatrati da je broj GPU niti na nivou jednog bloka

niti određen konstantom NUM_OF_GPU_THREADS, čija je vrednost za sve zadatke 1024. Obezbediti da

niti koje u nekom koraku nemaju posla na korektan način stignu do kraja tela CUDA jezgra.

Kod zadataka gde je to zahtevano, korisnik zadaje samo dimenzije nizova/matrica, a sve potrebne ulazne

podatke generisati u operativnoj memoriji uz pomoć generatora slučajnih brojeva iz biblioteke jezika C, a

zatim prebaciti u GPU memoriju. Generisani brojevi treba da budu odgovarajućeg tipa u opsegu od -MAX

do +MAX, gde MAX ima vrednost 1024. Za sve zadatke je potrebno napisati ili iskoristiti zadatu

sekvencijalnu (CPU) implementaciju odgovarajućeg problema koja će biti korišćena kao referentna (gold)

implementacija prilikom testiranja programa.

Svaki program treba da:

Generiše ili koristi već obezbeđene ulazne test primere.

− Kopira test primere u GPU memoriju i rezultat iz GPU memorije.

− Izvrši CUDA jezgro nad zadatim test primerom.

− Izvrši sekvencijalnu implementaciju nad zadatim test primerom.

− Ispiše vreme izvršavanja CUDA i sekvencijalne implementacije problema.

− Uporedi rezultat CUDA i sekvencijalne implementacije problema.

Ispiše "Test PASSED" ili "Test FAILED" u zavisnosti da li se rezultat izvršavanja MPI implementacije

podudara sa rezultatom izvršavanja sekvencijalne implementacije.

http://developer.nvidia.com/nvidia-gpu-computing-documentation

Kod zadataka koji koriste realne tipove (float, double) tolerisati maksimalno odsupanje od

ACCURACY prilikom poređenja rezultata CPU i GPU implementacije. Smatrati da konstanta ACCURACY

ima vrednost 0.01. Prilikom rešavanja zadataka voditi računa da se postigne maksimalni mogući

paralelizam. Dozvoljeno je ograničeno preuređivanje dostupnih sekvencijalnih implementacija prilikom

paralelizacije. Ukoliko u nekom zadatku nešto nije dovoljno precizno definisano, student treba da

uvede razumnu pretpostavku i da nastavi da izgrađuje svoje rešenje na temeljima uvedene

pretpostavke.

Dostupne sekvencijalne implementacije se nalaze u arhivi koje se mogu preuzeti na adresi sa predmetnog

sajta. Na rtidev5.etf.rs računaru arhiva se može dohvatiti i raspakovati sledećim komandama:

Dohvatanje: wget http://mups.etf.rs/dz/2025-2026/MPS_DZ_2025_2026.zip

Raspakivanje: unzip MPS_DZ_2025_2026.zip

1. [3] Paralelizovati program koji formira sliku tačaka koje pripadaju Julia skupu tačaka

(https://en.wikipedia.org/wiki/Julia_set). Neka se posmatra skup tačaka (x, y) u na pravougaonom

domenu x, y ∈ [-1,5, 1.5] i neka važi z = x+yi. Julia skup je skup tačaka za koji iteracija z = z2 + c ne

divergira za određene zadate početne uslove. U zadatom programu početni uslov odgovara c=-

0.8+0.156i. Ukoliko u bilo kom trenutku važi 1000 < |z|, smatra se da tačka z ne pripada Julia skupu.

Program formira sliku u Targa (.tga) formatu koja se može otvoriti u nekom od namenskih pregledača

slika. Program se nalazi u datoteci julia.c u arhivi koja je priložena uz ovaj dokument, dok se

primeri izlaznih datoteka nalaze u direktorijumu output.

Program testirati sa parametrima koji su dati u run skripti.

2. [3] Paralelizovati program koji vrši izračunavanje 3D Poasonove jednačine korišćenjem Feyman-Kac

algoritma. Algoritam stohastički računa rešenje parcijalne diferencijalne jednačine krenuvši N puta iz

različitih tačaka domena. Tačke se kreću po nasumičnim putanjama i prilikom izlaska iz granica

domena kretanje se zaustavlja računajući dužinu puta do izlaska. Proces se ponavlja za svih N tačaka i

konačno aproksimira rešenje jednačine. Program se nalazi u datoteci feyman.c u arhivi koja je

priložena uz ovaj dokument.

Program testirati sa parametrima koji su dati u run skripti.

3. [4] Paralelizovati jednostavan program koji se bavi molekularnom dinamikom. Simulacija se bavi

česticama (molekulima) i njihovom međusobnom interakcijom u funkciji distance. Čestice nisu

prostorno ograničene, a algoritam iterativno rešava sistem diferencijalnih jednačina u diskretnim

vremenskim koracima. Na osnovu zadate pozicije i brzine čestice u jednom trenutku, algoritam

određuje poziciju i brzinu u narednom trenutku. Kod koji treba paralelizovati se nalazi u datoteci md.c

u arhivi koja je priložena uz ovaj dokument. Analizirati dati kod i obratiti pažnju na funkciju compute

za izračunavanje sila i energija. Ukoliko je potrebno međusobno isključenje prilikom paralelizacije

programa, koristiti dostupne OpenMP sinhornizacione direktive. Obratiti pažnju na efikasnost

paralelizacije.

Program testirati sa parametrima koji su dati u run skripti.

https://en.wikipedia.org/wiki/Julia_set
https://en.wikipedia.org/wiki/Poisson%27s_equation
https://en.wikipedia.org/wiki/Feynman%E2%80%93Kac_formula

