Multiprocesorski sistemi
Domaci zadatak 2
Skolska godina 2025/2026
MPI — komunikacija, izvedeni tipovi, grupe i komunikatori
(10 poena)

Uvod

Cilj zadatka je da studente obuci da samostalno podese MPI okruZenje i razvijaju osnovne MPI programe
koris¢enjem rutina za pojedinacnu 1 kolektivnu komunikaciju, izvedenih tipova podataka, grupa i
komunikatora.

Domaci zadaci se rade samostalno ili u paru. ReSenja domacih zadataka i izvestaj svaki student predaje
samostalno u svoj svn repozitorijum.

PodesSavanje okruzenja

PodesSavanja okruzenja izvrSiti prema uputstvima koja se nalaze u dokumentu za laboratorijsku vezbu 2 -
MPI. Obratiti paznju na razlike koje postoje kod podeSavanja za prevodenje na 32-bitnim i 64-bitnim
raCunarskim sistemima. Alternativno, koristiti OpenMPI na raCunaru rtidev5.etf.rs.

Izvestaj

Uz predati domaci zadatak (izvorne kodove) treba napisati i priloziti kratak izvestaj o izvrSenoj
paralelizaciji i dobijenim ubrzanjima u odnosu na sekvencijalnu verziju koda. Za svaki reSeni zadatak treba
kratko opisati uoena mesta koja je moguce paralelizovati i nacin paralelizacije. Takode, potrebno je dati
logove izvrSenog koda za sve test primere koji se izvrSavaju 1 nalaze se u run datoteci 1 nacrtati grafike
ubrzanja u odnosu na sekvencijalnu verziju. Na graficima je potrebno dati i rezultate poredenja razli¢itih
nadina paralelizacije za isti broj niti, ukoliko postoje takvi zahtevi u okviru teksta zadatka. Sablon za pisanje
izvestaja se nalazi u okviru sekcije za domace zadatke predmetnog sajta.

Zadaci

Svaki od programa treba napisati tako da moze biti izvrSen sa bilo kojim od broja procesa iz opsega
navedenog iza postavke zadatka. N oznafava maksimalan moguci broj procesa u trenutno dostupnom
okruzenju. Za programe koji ¢e biti izvrSavani na samo jednom rac¢unaru, pretpostaviti da vazi N=16. Svaki
program treba da vrsi proveru da li je broj procesa tekuceg izvrSavanja odgovarajuci postavci zadatka. U
slu¢aju da to nije zadovoljeno, prekinuti izvrSavanje.

Kod zadataka gde je to zahtevano, korisnik zadaje samo dimenzije problema/nizova/matrica, a sve potrebne
ulazne podatke generisati u operativnoj memoriji uz pomo¢ generatora pseudoslucajnih brojeva iz
biblioteke jezika C. Generisani brojevi treba da budu odgovarajuceg tipa u opsegu od -MAX do +MAX, gde
MAX ima vrednost 1024. Za sve zadatke je potrebno napisati ili iskoristiti zadatu sekvencijalnu
implementaciju odgovarajuceg problema. U cilju postizanja najboljih performansi, dozvoljeno je menjati
izvorni sekvencijalni kod. Izvorni kod, ili njegova modifikacija koja postize najbolje performanse, je
potrebno koristiti kao referentnu (go/d) implementaciju prilikom testiranja programa.

Svaki program treba da:

- GeneriSe ili koristi ve¢ obezbedene ulazne test primere.

- Izvrsi sekvencijalnu implementaciju nad zadatim test primerom.

- Izvrsi paralelnu implementaciju nad zadatim test primerom.

- IspiSte vreme izvrSavanja sekvencijalne i paralelne implementacije problema.

- Uporedi rezultat sekvencijalne i OpenMP implementacije problema.

- IspiSe "Test PASSED" ili "Test FAILED" u zavisnosti da li se rezultat izvrSavanja
paralelizovane implementacije podudara sa rezultatom izvrSavanja sekvencijalne implementacije.

Poredenje rezultata paralelizovane 1 sekvencijalne implementacije problema izvrSiti na kraju
sekvencijalnog dela programa. Kod zadataka koji koriste realne tipove (£loat, double) tolerisati
maksimalno odsupanje od *ACCURACY prilikom poredenja rezultata sekvencijalne i OpenMP
implementacije. Smatrati da konstanta ACCURACY ima vrednost 0.01 ili usvojiti razumnu vrednost u skladu
sa problemom koji se reSava. Prilikom reSavanja zadataka voditi racuna da se postigne maksimalni
mogudéi paralelizam. Dozvoljeno je ograni¢eno preuredivanje dostupnih sekvencijalnih implementacija
prilikom paralelizacije. Ukoliko u nekom zadatku neSto nije dovoljno precizno definisano, student
treba da uvede razumnu pretpostavku i da nastavi da izgraduje svoje reSenje na temeljima uvedene
pretpostavke.

Dostupne sekvencijalne implementacije se nalaze u arhivi koje se mogu preuzeti na adresi sa predmetnog
sajta. Na rtidev5.et£. rs raCunaru arhiva se moze dohvatiti i raspakovati slede¢im komandama:

Dohvatanje: wget http://mups.etf.rs/dz/2025-2026/MPS_DZ_2025_2026.zip
Raspakivanje: unzip MPS_DZ_2025_2026.zip

1. [2] Paralelizovati program koji formira sliku tacaka koje pripadaju Julia skupu tacaka
(https://en.wikipedia.org/wiki/Julia_set). Neka se posmatra skup tacaka (x, y) u na pravougaonom
domenu x, y € [-1,5, 1.5] i neka vazi z = x+yi. Julia skup je skup tacaka za koji iteracija z = z° + ¢ ne
divergira za odredene zadate pocetne uslove. U zadatom programu pocetni uslov odgovara c=-
0.8+0.156i. Ukoliko u bilo kom trenutku vazi /000 < |z|, smatra se da tacka z ne pripada Julia skupu.
Program formira sliku u 7arga (.tga) formatu koja se moze otvoriti u nekom od namenskih pregledaca
slika. Program se nalazi u datoteci julia.c u arhivi koja je prilozena uz ovaj dokument, dok se
primeri izlaznih datoteka nalaze u direktorijumu output.

Program testirati sa parametrima koji su dati u run skripti.

Proces sa rangom 0 treba da ucita ulazne podatke, raspodeli posao ostalim procesima, na kraju prikupi
dobijene rezultate i ravnopravno ucestvuje u obradi. Za razmenu podataka, koristiti rutine za kolektivnu
komunikaciju.

2. |2] Paralelizovati program koji vr8i izrac¢unavanje 3D Poasonove jednacine koris¢enjem Feyman-Kac
algoritma. Algoritam stohasticki racuna reSenje parcijalne diferencijalne jednacine krenuvsi N puta iz
razli¢itih tacaka domena. Tacke se kreu po nasumi¢nim putanjama i prilikom izlaska iz granica
domena kretanje se zaustavlja racunaju¢i duzinu puta do izlaska. Proces se ponavlja za svih N tacaka i
kona¢no aproksimira reSenje jednacine. Program se nalazi u datoteci feyman.c u arhivi koja je
priloZzena uz ovaj dokument.

Program testirati sa parametrima koji su dati u run skripti.

Ukoliko je moguce, koristiti rutine za neblokiraju¢u komunikaciju za razmenu poruka.
3. [3] Resiti prethodni problem koriS¢enjem jednostrane komunikacije.

Program testirati sa parametrima koji su dati u run skripti.

4. |[3] Paralelizovati jednostavan program koji se bavi molekularnom dinamikom. Simulacija se bavi
esticama (molekulima) i njihovom medusobnom interakcijom u funkciji distance. Cestice nisu
prostorno ogranic¢ene, a algoritam iterativno reSava sistem diferencijalnih jednacina u diskretnim
vremenskim koracima. Na osnovu zadate pozicije i brzine Cestice u jednom trenutku, algoritam
odreduje poziciju i brzinu u narednom trenutku. Kod koji treba paralelizovati se nalazi u datotecimd. c
u arhivi koja je priloZena uz ovaj dokument. Analizirati dati kod i obratiti paznju na funkciju compute
za izraCunavanje sila 1 energija. Ukoliko je potrebno medusobno iskljucenje prilikom paralelizacije
programa, koristiti dostupne OpenMP sinhornizacione direktive. Obratiti paznju na efikasnost
paralelizacije.

Program paralelizovati koriS¢enjem manager - worker modela. Proces gospodar (master) treba da ucita
neophodne podatke, generiSe poslove, deli posao ostalim procesima (worker) 1 ispiSe na kraju dobijeni
rezultat. U svakom koraku obrade, proces gospodar Salje procesu radniku na obradu jednu jedinicu
posla ¢iji veli¢inu treba pazljivo odabrati. Proces radnik prima podatke, vrsi obradu, vraca rezultat,
signalizira gospodaru kada je spreman da primi slede¢i posao i ponavlja opisani postupak dok ne dobije
signal da prekine sa radom. Veli¢inu jedne jedinice posla prilagoditi karakteristikama programa.
Ukoliko je moguce, koristiti rutine za neblokiraju¢u komunikaciju za razmenu poruka.

Program testirati sa parametrima koji su dati u run skripti.

