
Multiprocesorski sistemi
Domaći zadatak 2

Školska godina 2025/2026
MPI – komunikacija, izvedeni tipovi, grupe i komunikatori

(10 poena)

Uvod
Cilj zadatka je da studente obuči da samostalno podese MPI okruženje i razvijaju osnovne MPI programe
korišćenjem rutina za pojedinačnu i kolektivnu komunikaciju, izvedenih tipova podataka, grupa i
komunikatora.

Domaći zadaci se rade samostalno ili u paru. Rešenja domaćih zadataka i izveštaj svaki student predaje
samostalno u svoj svn repozitorijum.

Podešavanje okruženja
Podešavanja okruženja izvršiti prema uputstvima koja se nalaze u dokumentu za laboratorijsku vežbu 2 -
MPI. Obratiti pažnju na razlike koje postoje kod podešavanja za prevođenje na 32-bitnim i 64-bitnim
računarskim sistemima. Alternativno, koristiti OpenMPI na računaru rtidev5.etf.rs.

Izveštaj
Uz predati domaći zadatak (izvorne kodove) treba napisati i priložiti kratak izveštaj o izvršenoj
paralelizaciji i dobijenim ubrzanjima u odnosu na sekvencijalnu verziju koda. Za svaki rešeni zadatak treba
kratko opisati uočena mesta koja je moguće paralelizovati i način paralelizacije. Takođe, potrebno je dati
logove izvršenog koda za sve test primere koji se izvršavaju i nalaze se u run datoteci i nacrtati grafike
ubrzanja u odnosu na sekvencijalnu verziju. Na graficima je potrebno dati i rezultate poređenja različitih
načina paralelizacije za isti broj niti, ukoliko postoje takvi zahtevi u okviru teksta zadatka. Šablon za pisanje
izveštaja se nalazi u okviru sekcije za domaće zadatke predmetnog sajta.

Zadaci
Svaki od programa treba napisati tako da može biti izvršen sa bilo kojim od broja procesa iz opsega
navedenog iza postavke zadatka. N označava maksimalan mogući broj procesa u trenutno dostupnom
okruženju. Za programe koji će biti izvršavani na samo jednom računaru, pretpostaviti da važi N=16. Svaki
program treba da vrši proveru da li je broj procesa tekućeg izvršavanja odgovarajući postavci zadatka. U
slučaju da to nije zadovoljeno, prekinuti izvršavanje.

Kod zadataka gde je to zahtevano, korisnik zadaje samo dimenzije problema/nizova/matrica, a sve potrebne
ulazne podatke generisati u operativnoj memoriji uz pomoć generatora pseudoslučajnih brojeva iz
biblioteke jezika C. Generisani brojevi treba da budu odgovarajućeg tipa u opsegu od -MAX do +MAX, gde
MAX ima vrednost 1024. Za sve zadatke je potrebno napisati ili iskoristiti zadatu sekvencijalnu
implementaciju odgovarajućeg problema. U cilju postizanja najboljih performansi, dozvoljeno je menjati
izvorni sekvencijalni kod. Izvorni kod, ili njegova modifikacija koja postiže najbolje performanse, je
potrebno koristiti kao referentnu (gold) implementaciju prilikom testiranja programa.

Svaki program treba da:

− Generiše ili koristi već obezbeđene ulazne test primere.

− Izvrši sekvencijalnu implementaciju nad zadatim test primerom.

− Izvrši paralelnu implementaciju nad zadatim test primerom.

− Ispište vreme izvršavanja sekvencijalne i paralelne implementacije problema.

− Uporedi rezultat sekvencijalne i OpenMP implementacije problema.

− Ispiše "Test PASSED" ili "Test FAILED" u zavisnosti da li se rezultat izvršavanja
paralelizovane implementacije podudara sa rezultatom izvršavanja sekvencijalne implementacije.

Poređenje rezultata paralelizovane i sekvencijalne implementacije problema izvršiti na kraju
sekvencijalnog dela programa. Kod zadataka koji koriste realne tipove (float, double) tolerisati
maksimalno odsupanje od ±ACCURACY prilikom poređenja rezultata sekvencijalne i OpenMP
implementacije. Smatrati da konstanta ACCURACY ima vrednost 0.01 ili usvojiti razumnu vrednost u skladu
sa problemom koji se rešava. Prilikom rešavanja zadataka voditi računa da se postigne maksimalni
mogući paralelizam. Dozvoljeno je ograničeno preuređivanje dostupnih sekvencijalnih implementacija
prilikom paralelizacije. Ukoliko u nekom zadatku nešto nije dovoljno precizno definisano, student
treba da uvede razumnu pretpostavku i da nastavi da izgrađuje svoje rešenje na temeljima uvedene
pretpostavke.

Dostupne sekvencijalne implementacije se nalaze u arhivi koje se mogu preuzeti na adresi sa predmetnog
sajta. Na rtidev5.etf.rs računaru arhiva se može dohvatiti i raspakovati sledećim komandama:

Dohvatanje: wget http://mups.etf.rs/dz/2025-2026/MPS_DZ_2025_2026.zip

Raspakivanje: unzip MPS_DZ_2025_2026.zip

1. [2] Paralelizovati program koji formira sliku tačaka koje pripadaju Julia skupu tačaka
(https://en.wikipedia.org/wiki/Julia_set). Neka se posmatra skup tačaka (x, y) u na pravougaonom
domenu x, y ∈ [-1,5, 1.5] i neka važi z = x+yi. Julia skup je skup tačaka za koji iteracija z = z2 + c ne
divergira za određene zadate početne uslove. U zadatom programu početni uslov odgovara c=-
0.8+0.156i. Ukoliko u bilo kom trenutku važi 1000 < |z|, smatra se da tačka z ne pripada Julia skupu.
Program formira sliku u Targa (.tga) formatu koja se može otvoriti u nekom od namenskih pregledača
slika. Program se nalazi u datoteci julia.c u arhivi koja je priložena uz ovaj dokument, dok se
primeri izlaznih datoteka nalaze u direktorijumu output.

Program testirati sa parametrima koji su dati u run skripti.

Proces sa rangom 0 treba da učita ulazne podatke, raspodeli posao ostalim procesima, na kraju prikupi
dobijene rezultate i ravnopravno učestvuje u obradi. Za razmenu podataka, koristiti rutine za kolektivnu
komunikaciju.

2. [2] Paralelizovati program koji vrši izračunavanje 3D Poasonove jednačine korišćenjem Feyman-Kac
algoritma. Algoritam stohastički računa rešenje parcijalne diferencijalne jednačine krenuvši N puta iz
različitih tačaka domena. Tačke se kreću po nasumičnim putanjama i prilikom izlaska iz granica
domena kretanje se zaustavlja računajući dužinu puta do izlaska. Proces se ponavlja za svih N tačaka i
konačno aproksimira rešenje jednačine. Program se nalazi u datoteci feyman.c u arhivi koja je
priložena uz ovaj dokument.

Program testirati sa parametrima koji su dati u run skripti.

Ukoliko je moguće, koristiti rutine za neblokirajuću komunikaciju za razmenu poruka.

3. [3] Rešiti prethodni problem korišćenjem jednostrane komunikacije.

Program testirati sa parametrima koji su dati u run skripti.

4. [3] Paralelizovati jednostavan program koji se bavi molekularnom dinamikom. Simulacija se bavi
česticama (molekulima) i njihovom međusobnom interakcijom u funkciji distance. Čestice nisu
prostorno ograničene, a algoritam iterativno rešava sistem diferencijalnih jednačina u diskretnim
vremenskim koracima. Na osnovu zadate pozicije i brzine čestice u jednom trenutku, algoritam
određuje poziciju i brzinu u narednom trenutku. Kod koji treba paralelizovati se nalazi u datoteci md.c
u arhivi koja je priložena uz ovaj dokument. Analizirati dati kod i obratiti pažnju na funkciju compute
za izračunavanje sila i energija. Ukoliko je potrebno međusobno isključenje prilikom paralelizacije
programa, koristiti dostupne OpenMP sinhornizacione direktive. Obratiti pažnju na efikasnost
paralelizacije.

Program paralelizovati korišćenjem manager - worker modela. Proces gospodar (master) treba da učita
neophodne podatke, generiše poslove, deli posao ostalim procesima (worker) i ispiše na kraju dobijeni
rezultat. U svakom koraku obrade, proces gospodar šalje procesu radniku na obradu jednu jedinicu
posla čiji veličinu treba pažljivo odabrati. Proces radnik prima podatke, vrši obradu, vraća rezultat,
signalizira gospodaru kada je spreman da primi sledeći posao i ponavlja opisani postupak dok ne dobije
signal da prekine sa radom. Veličinu jedne jedinice posla prilagoditi karakteristikama programa.
Ukoliko je moguće, koristiti rutine za neblokirajuću komunikaciju za razmenu poruka.

Program testirati sa parametrima koji su dati u run skripti.

